كيميائية1
01-14-2008, 10:49 PM
إن قياس الأشياء في العالم الماكروسكوبي (العيني) الذي حول الناس هو أمر مألوف لديهم . فأحدهم يسحب مقياسا شريطيا ليقيس طول منضدة ما. إن ضابط الشرطة يصوب مسدسه الراداري على سيارة ليعرف أي اتجاه تسلكه السيارة، و كذلك ليعرف كم سرعتها. إنهم يحصلون على المعلومات التي يريدونها ولا يقلقون بشأن ما إذا كانت القياسات نفسها قد غيرت ما كانوا يقيسونه. وفي النهاية، ما المعنى في الإقرار بأن طول المنضدة هو 80 سم إذا كانت عملية القياس ذاتها تغيّر ذلك الطول.
على أية حال، في المقياس الذري لميكانيكا الكم فإن عملية القياس تصبح حساسة جدا. دعنا نفترض أنك تريد أن تعرف أين يكون الإلكترون و إلى أين سيذهب (إن لدى ذلك الضابط شعورا بأن أيَّ إلكترونٍ يصطاده سيكون ماضيا بسرعة أسرع من الحد المسموح به). كيف ستفعلها؟ أتحضر مكبرا ذا قدرة عالية جدا ثم تبحث عن الإلكترون؟ و لكن عملية البحث هذه سوف تعتمد على الضوء، و الذي هو مكون من الفوتونات، و هذه الفوتونات تملك قدرا كافيا من كمية الحركة (الزخم) التي ما أن تصطدم بالإلكترون حتى تغير مساره! إن ذلك يشبه دحرجة كرة البدء على طاولة البليارد و محاولة اكتشاف المكان الذي ستذهب إليه عن طريق ارتداد الكرات الثمانية عن الطاولة. بأخذك القياس عن طريق الكرات الثمانية فإنك بالتأكيد قد أبدلت مسار كرة البدء. قد تكون اكتشفت أين كانت كرة البدء، و لكنك الآن لا تملك أي فكرة عن أين ستذهب (لأنك كنت تقيس بالكرات الثمانية بدلا من النظر إلى الطاولة).
كان فيرنر هايزنبرج أول من أدرك أن بعض الأزواج من القياسات تحوي في جوهرها ارتيابية (لا حتمية) تشترك معها . على سبيل المثال، إذا كانت لديك فكرة جيدة عن موقع شيء ما، عندها، و لدرجة معينة، ستكون لديك فكرة ضعيفة عن مدى سرعته أو في أي جهة يتحرك. إننا لا نلاحظ ذلك في حياتنا العادية لأن أي ارتيابية متأصلة انطلاقا من مبدأ هايزنبرج هي غير مؤثرة ضمن الدقة المقبولة التي نأملها. و لتمثيل، قد ترى سيارة مركونة فتظن أنك تأكيدا تعرف موقعها و سرعتها. و لكن هل ستعرف تلك الأشياء تماما؟ إذا كنت ستقيس موقع السيارة بدقة تصل إلى مليون من مليون من السنتيمتر، فإنك بذلك ستحاول أن تقيس مواقع الذرات المنفردة التي تكوِّن السيارة، و تلك الذرات تهتز لأن درجة حرارة السيارة أكبر من الصفر المطلق!
إن مبدأ الارتياب لهايزنبرج هو تماما كالذباب في وجه الفيزياء التقليدية.
في النهاية، فإن الأساس في العلوم هو القدرة على قياس الأشياء بدقة.
و الآن تقول ميكانيكا الكم بأنه من المستحيل الحصول على تلك القياسات تماما! و لكن مبدأ الارتياب لهايزنبرج هو حقيقة طبيعية، إذ في ضوئه سوف يكون من المستحيل بناء أداة قياس قد تصل إلى الدقة التامة .
على أية حال، في المقياس الذري لميكانيكا الكم فإن عملية القياس تصبح حساسة جدا. دعنا نفترض أنك تريد أن تعرف أين يكون الإلكترون و إلى أين سيذهب (إن لدى ذلك الضابط شعورا بأن أيَّ إلكترونٍ يصطاده سيكون ماضيا بسرعة أسرع من الحد المسموح به). كيف ستفعلها؟ أتحضر مكبرا ذا قدرة عالية جدا ثم تبحث عن الإلكترون؟ و لكن عملية البحث هذه سوف تعتمد على الضوء، و الذي هو مكون من الفوتونات، و هذه الفوتونات تملك قدرا كافيا من كمية الحركة (الزخم) التي ما أن تصطدم بالإلكترون حتى تغير مساره! إن ذلك يشبه دحرجة كرة البدء على طاولة البليارد و محاولة اكتشاف المكان الذي ستذهب إليه عن طريق ارتداد الكرات الثمانية عن الطاولة. بأخذك القياس عن طريق الكرات الثمانية فإنك بالتأكيد قد أبدلت مسار كرة البدء. قد تكون اكتشفت أين كانت كرة البدء، و لكنك الآن لا تملك أي فكرة عن أين ستذهب (لأنك كنت تقيس بالكرات الثمانية بدلا من النظر إلى الطاولة).
كان فيرنر هايزنبرج أول من أدرك أن بعض الأزواج من القياسات تحوي في جوهرها ارتيابية (لا حتمية) تشترك معها . على سبيل المثال، إذا كانت لديك فكرة جيدة عن موقع شيء ما، عندها، و لدرجة معينة، ستكون لديك فكرة ضعيفة عن مدى سرعته أو في أي جهة يتحرك. إننا لا نلاحظ ذلك في حياتنا العادية لأن أي ارتيابية متأصلة انطلاقا من مبدأ هايزنبرج هي غير مؤثرة ضمن الدقة المقبولة التي نأملها. و لتمثيل، قد ترى سيارة مركونة فتظن أنك تأكيدا تعرف موقعها و سرعتها. و لكن هل ستعرف تلك الأشياء تماما؟ إذا كنت ستقيس موقع السيارة بدقة تصل إلى مليون من مليون من السنتيمتر، فإنك بذلك ستحاول أن تقيس مواقع الذرات المنفردة التي تكوِّن السيارة، و تلك الذرات تهتز لأن درجة حرارة السيارة أكبر من الصفر المطلق!
إن مبدأ الارتياب لهايزنبرج هو تماما كالذباب في وجه الفيزياء التقليدية.
في النهاية، فإن الأساس في العلوم هو القدرة على قياس الأشياء بدقة.
و الآن تقول ميكانيكا الكم بأنه من المستحيل الحصول على تلك القياسات تماما! و لكن مبدأ الارتياب لهايزنبرج هو حقيقة طبيعية، إذ في ضوئه سوف يكون من المستحيل بناء أداة قياس قد تصل إلى الدقة التامة .