رجب مصطفى
01-10-2011, 02:36 AM
بسم الله الرحمن الرحيم
الحمد لله الذي صدق وعده، ونصر عبده، وأعز جنده، وهزم الأحزاب وحده، والصلاة السلام على من لا نبي بعده، رسوله الذي هدى به الأنام، وكشف به شبهات الأوهام، وعلى آله الطيبين الأطهار، وأصحابه المجاهدين الأبرار، الذين أغاظ الله بهم الكفار، وبسط بهم رحمته في جميع الأقطار
أما بعد:
*** ملحوظة هامة جداً كالعادة ... هذا الموضوع حصري لـ "منتدى الفيزياء التعليمي" فقط، غير ذلك سيكون واضعه سارقاً له !!!
علاقة عدم التأكد للمتذبذب التوافقي
The Uncertainty Relation of the Harmonic Oscillator
من المعروف أن الدالة الموجية المعيارة normalized wavefunction للمتذبذب التوافقي تأخذ الصورة العامة:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cpsi&space;_%7Bn%7D% 28x%29=%5Cfrac%7B1%7D%7B%5Csqrt%7B2 %5E%7Bn%7D&space;%5C;n%21%5Csqrt%7B%5Cpi% 7D%7D%7D&space;%5Cleft&space;%28&space;%5Cfrac%7Bm&space;%5 Comega%7D%7B%5Chbar%7D&space;%5Cright&space;%29 %5E%7B1/4%7D&space;H_%7Bn%7D%5Cleft&space;%28%5Csqrt%7B &space;%5Cfrac%7Bm&space;%5Comega%7D%7B%5Chbar% 7D%7D&space;%5C;x%5Cright&space;%29e%5E%7B-m%5Comega&space;x%5E%7B2%7D/2%5Chbar%7D
ومنها، تكون الدالة الموجية للحالة الأرضية ground state wavefunction هي:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cpsi&space;_%7B0%7D% 28x%29=%5Cfrac%7B1%7D%7B%5Csqrt%7B% 5Csqrt%7B%5Cpi%7D%7D%7D&space;%5Cleft&space;%28 &space;%5Cfrac%7Bm&space;%5Comega%7D%7B%5Chbar% 7D&space;%5Cright&space;%29%5E%7B1/4%7D&space;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/2%5Chbar%7D
وللحالة الأولى المثارة the first excited state wavefunction:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cpsi&space;_%7B1%7D% 28x%29=%5Cfrac%7B%5Csqrt%7B2%7D%7D% 7B%5Csqrt%7B%5Csqrt%7B%5Cpi%7D%7D%7 D&space;%5Cleft&space;%28&space;%5Cfrac%7Bm&space;%5Comega% 7D%7B%5Chbar%7D&space;%5Cright&space;%29%5E%7B3/4%7D&space;x&space;%5C;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/2%5Chbar%7D
والذي مربعها هو:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cleft&space;%7C%5Cps i&space;_%7B1%7D%28x%29&space;%5Cright&space;%7C%5E%7 B2%7D=%5Cfrac%7B2%7D%7B%5Csqrt%7B%5 Cpi%7D%7D&space;%5Cleft&space;%28&space;%5Cfrac%7Bm&space;% 5Comega%7D%7B%5Chbar%7D&space;%5Cright&space;%2 9%5E%7B3/2%7D&space;x%5E%7B2%7D&space;%5C;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/%5Chbar%7D
وعليه، تُصبح القيمة المتوقعة للموضع position expectation value هي:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cleft&space;%5Clangl e&space;x&space;%5Cright&space;%5Crangle&space;=&space;%5Cint _%7B-%5Cinfty&space;%7D%5E%7B%5Cinfty&space;%7Dx&space;%5C left&space;%7C%5Cpsi&space;_%7B1%7D%28x%29&space;%5Cr ight&space;%7C%5E%7B2%7Ddx
أي:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cleft&space;%5Clangl e&space;x&space;%5Cright&space;%5Crangle&space;=%5Cfrac%7B2 %7D%7B%5Csqrt%7B%5Cpi%7D%7D&space;%5Cleft &space;%28&space;%5Cfrac%7Bm&space;%5Comega%7D%7B%5Ch bar%7D&space;%5Cright&space;%29%5E%7B3/2%7D&space;%5Cint_%7B-%5Cinfty&space;%7D%5E%7B%5Cinfty&space;%7Dx%5E% 7B3%7D&space;%5C;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/%5Chbar%7D&space;%5C;dx&space;=0
أما القيمة المتوقعة لمربع الموضع square position expectation value ، فهي:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cleft&space;%5Clangl e&space;x%5E%7B2%7D&space;%5Cright&space;%5Crangle&space;=% 5Cfrac%7B2%7D%7B%5Csqrt%7B%5Cpi%7D% 7D&space;%5Cleft&space;%28&space;%5Cfrac%7Bm&space;%5Comega %7D%7B%5Chbar%7D&space;%5Cright&space;%29%5E%7B 3/2%7D&space;%5Cint_%7B-%5Cinfty&space;%7D%5E%7B%5Cinfty&space;%7Dx%5E% 7B4%7D&space;%5C;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/%5Chbar%7D&space;%5C;dx
ولكن:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cint_%7B-%5Cinfty&space;%7D%5E%7B%5Cinfty&space;%7Dx%5E% 7B4%7D&space;%5C;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/%5Chbar%7D&space;%5C;dx&space;=&space;%5Cleft&space;%28&space;%5C frac%7B%5Chbar%7D%7Bm&space;%5Comega%7D&space;% 5Cright&space;%29%5E%7B5/2%7D%5C;&space;%5Cleft&space;%28&space;%5Cfrac%7B3%7D %7B4%7D&space;%5Csqrt%7B%5Cpi%7D%5Cright&space; %29
إذاً:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Clarge&space;%5Cleft &space;%5Clangle&space;x%5E%7B2%7D&space;%5Cright&space;%5C rangle&space;=&space;%5Cfrac%7B3%7D%7B2%7D&space;%5Cl eft&space;%28&space;%5Cfrac%7B%5Chbar%7D%7Bm&space;%5 Comega%7D&space;%5Cright&space;%29
ومنها نحصل على مقدار الشك uncertainty في الموضع:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5CDelta&space;x&space;=&space;%5C sqrt%7B%5Cleft&space;%5Clangle&space;x%5E%7B2%7 D&space;%5Cright&space;%5Crangle&space;-&space;%5Cleft&space;%5Clangle&space;x&space;%5Cright&space;%5Cra ngle&space;%5E%7B2%7D%7D=&space;%5Csqrt%7B%5Cle ft&space;%5Clangle&space;x%5E%7B2%7D&space;%5Cright&space;% 5Crangle%7D=%5Csqrt%7B&space;%5Cfrac%7B3% 7D%7B2%7D&space;%5Cleft&space;%28&space;%5Cfrac%7B%5C hbar%7D%7Bm&space;%5Comega%7D&space;%5Cright&space;%2 9%7D
يُتبع ...
الحمد لله الذي صدق وعده، ونصر عبده، وأعز جنده، وهزم الأحزاب وحده، والصلاة السلام على من لا نبي بعده، رسوله الذي هدى به الأنام، وكشف به شبهات الأوهام، وعلى آله الطيبين الأطهار، وأصحابه المجاهدين الأبرار، الذين أغاظ الله بهم الكفار، وبسط بهم رحمته في جميع الأقطار
أما بعد:
*** ملحوظة هامة جداً كالعادة ... هذا الموضوع حصري لـ "منتدى الفيزياء التعليمي" فقط، غير ذلك سيكون واضعه سارقاً له !!!
علاقة عدم التأكد للمتذبذب التوافقي
The Uncertainty Relation of the Harmonic Oscillator
من المعروف أن الدالة الموجية المعيارة normalized wavefunction للمتذبذب التوافقي تأخذ الصورة العامة:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cpsi&space;_%7Bn%7D% 28x%29=%5Cfrac%7B1%7D%7B%5Csqrt%7B2 %5E%7Bn%7D&space;%5C;n%21%5Csqrt%7B%5Cpi% 7D%7D%7D&space;%5Cleft&space;%28&space;%5Cfrac%7Bm&space;%5 Comega%7D%7B%5Chbar%7D&space;%5Cright&space;%29 %5E%7B1/4%7D&space;H_%7Bn%7D%5Cleft&space;%28%5Csqrt%7B &space;%5Cfrac%7Bm&space;%5Comega%7D%7B%5Chbar% 7D%7D&space;%5C;x%5Cright&space;%29e%5E%7B-m%5Comega&space;x%5E%7B2%7D/2%5Chbar%7D
ومنها، تكون الدالة الموجية للحالة الأرضية ground state wavefunction هي:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cpsi&space;_%7B0%7D% 28x%29=%5Cfrac%7B1%7D%7B%5Csqrt%7B% 5Csqrt%7B%5Cpi%7D%7D%7D&space;%5Cleft&space;%28 &space;%5Cfrac%7Bm&space;%5Comega%7D%7B%5Chbar% 7D&space;%5Cright&space;%29%5E%7B1/4%7D&space;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/2%5Chbar%7D
وللحالة الأولى المثارة the first excited state wavefunction:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cpsi&space;_%7B1%7D% 28x%29=%5Cfrac%7B%5Csqrt%7B2%7D%7D% 7B%5Csqrt%7B%5Csqrt%7B%5Cpi%7D%7D%7 D&space;%5Cleft&space;%28&space;%5Cfrac%7Bm&space;%5Comega% 7D%7B%5Chbar%7D&space;%5Cright&space;%29%5E%7B3/4%7D&space;x&space;%5C;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/2%5Chbar%7D
والذي مربعها هو:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cleft&space;%7C%5Cps i&space;_%7B1%7D%28x%29&space;%5Cright&space;%7C%5E%7 B2%7D=%5Cfrac%7B2%7D%7B%5Csqrt%7B%5 Cpi%7D%7D&space;%5Cleft&space;%28&space;%5Cfrac%7Bm&space;% 5Comega%7D%7B%5Chbar%7D&space;%5Cright&space;%2 9%5E%7B3/2%7D&space;x%5E%7B2%7D&space;%5C;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/%5Chbar%7D
وعليه، تُصبح القيمة المتوقعة للموضع position expectation value هي:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cleft&space;%5Clangl e&space;x&space;%5Cright&space;%5Crangle&space;=&space;%5Cint _%7B-%5Cinfty&space;%7D%5E%7B%5Cinfty&space;%7Dx&space;%5C left&space;%7C%5Cpsi&space;_%7B1%7D%28x%29&space;%5Cr ight&space;%7C%5E%7B2%7Ddx
أي:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cleft&space;%5Clangl e&space;x&space;%5Cright&space;%5Crangle&space;=%5Cfrac%7B2 %7D%7B%5Csqrt%7B%5Cpi%7D%7D&space;%5Cleft &space;%28&space;%5Cfrac%7Bm&space;%5Comega%7D%7B%5Ch bar%7D&space;%5Cright&space;%29%5E%7B3/2%7D&space;%5Cint_%7B-%5Cinfty&space;%7D%5E%7B%5Cinfty&space;%7Dx%5E% 7B3%7D&space;%5C;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/%5Chbar%7D&space;%5C;dx&space;=0
أما القيمة المتوقعة لمربع الموضع square position expectation value ، فهي:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cleft&space;%5Clangl e&space;x%5E%7B2%7D&space;%5Cright&space;%5Crangle&space;=% 5Cfrac%7B2%7D%7B%5Csqrt%7B%5Cpi%7D% 7D&space;%5Cleft&space;%28&space;%5Cfrac%7Bm&space;%5Comega %7D%7B%5Chbar%7D&space;%5Cright&space;%29%5E%7B 3/2%7D&space;%5Cint_%7B-%5Cinfty&space;%7D%5E%7B%5Cinfty&space;%7Dx%5E% 7B4%7D&space;%5C;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/%5Chbar%7D&space;%5C;dx
ولكن:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Cint_%7B-%5Cinfty&space;%7D%5E%7B%5Cinfty&space;%7Dx%5E% 7B4%7D&space;%5C;e%5E%7B-m%5Comega&space;x%5E%7B2%7D/%5Chbar%7D&space;%5C;dx&space;=&space;%5Cleft&space;%28&space;%5C frac%7B%5Chbar%7D%7Bm&space;%5Comega%7D&space;% 5Cright&space;%29%5E%7B5/2%7D%5C;&space;%5Cleft&space;%28&space;%5Cfrac%7B3%7D %7B4%7D&space;%5Csqrt%7B%5Cpi%7D%5Cright&space; %29
إذاً:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5Clarge&space;%5Cleft &space;%5Clangle&space;x%5E%7B2%7D&space;%5Cright&space;%5C rangle&space;=&space;%5Cfrac%7B3%7D%7B2%7D&space;%5Cl eft&space;%28&space;%5Cfrac%7B%5Chbar%7D%7Bm&space;%5 Comega%7D&space;%5Cright&space;%29
ومنها نحصل على مقدار الشك uncertainty في الموضع:
http://latex.codecogs.com/gif.latex?%5Clarge&space;%5CDelta&space;x&space;=&space;%5C sqrt%7B%5Cleft&space;%5Clangle&space;x%5E%7B2%7 D&space;%5Cright&space;%5Crangle&space;-&space;%5Cleft&space;%5Clangle&space;x&space;%5Cright&space;%5Cra ngle&space;%5E%7B2%7D%7D=&space;%5Csqrt%7B%5Cle ft&space;%5Clangle&space;x%5E%7B2%7D&space;%5Cright&space;% 5Crangle%7D=%5Csqrt%7B&space;%5Cfrac%7B3% 7D%7B2%7D&space;%5Cleft&space;%28&space;%5Cfrac%7B%5C hbar%7D%7Bm&space;%5Comega%7D&space;%5Cright&space;%2 9%7D
يُتبع ...