المساعد الشخصي الرقمي

مشاهدة النسخة كاملة : لقطات فى الفيزياء النووية:



محمد ابوزيد
01-14-2010, 02:12 AM
بنية نواة الذرة

بنية نواة الذرة النواة (نواة الذرة) هى مركز الذرة. تتكون النويات من بروتونات, ونيوترونات. عدة البورتونات في نواة الذرة يطلق عليه العدد الذري, ويحدد أي عنصر له هذه الذرة. فمثلاً النواة التى بها بروتون واحد (أى النواة الوحيدة التى يمكن أن لا يكون بها نيوترونات) من مكونات ذرة الهيدروجين, والتي بها 6 بروتونات, ترجع للعنصر كربون, أو التى بها 8 بروتونات أكسجين. يحدد عدد النيورتونات نظائر العنصر. عدد النيوترونات والبروتونات متناسب, وفى النويات الصغيرة يكونا تقريبا متساويين, بينما يكون في النويات الثقيلة عدد كبير من النيوترونات. والرقمان معا يحددا النيوكليد (أحد أنواع النويات). البروتونات والنيوترونات لهما تقريبا نفس الكتلة, ويكون عدد الكتلة مساويا لمجموعهما معا, والى يساوى تقريبا الكتلة الذرية. وكتلة الإلكترونات صغيرة بالمقارنة بكتلة النواة. نصف قطر النوكليون (نيترون أو بروتون) يساوي 1 fm (فيمتو متر = 10-15 m). بينما نصف قطر النواة, والذى يمكن أن يكون تقريبا الجذر التربيعي لعدد الكتلة مضروبا في 1.2 fm, أقل من 0.01% من قطر الذرة. وعلى هذا تكون كثافة النواة أكثر من تريليون (1012) مرة من الذرة ككل. ويكون لواحد مللي متر مكعب من مادة النواة, لو تم ضغطه, كتلة تبلغ 200,000 طن. النجم النيتروني يتكون من مثل هذا التصور. وبالرغم من ان البروتونات الموجبة الشحنة يحدث بينها وبين بعضها تضاد كهرمغناطيسي, فإن المسافة بين النيوكلونات تكون صغيرة بدرجة كافية لأن يكون التجاذب القوي (والذى تكون أقوى من القوى الكهرمغناطيسية ولكن تقل بشدة مع بعد المسافة) غالب عليها. (وتكون قوى الجاذبية مهملة, لكونها أضعف 1036 من التضاد الكهرمغناطيسي). كان اكتشاف الإلكترون أول إشارة على أن الذرة لها بناء داخلي. وهذا البناء كان تصوره المبدئي طبقا "لكعك الزبيب" أو سكل بودنج الخوخ, والذى فيه تكون الإلكترونات الصغيرة, السالبة الشحنة مغمورة في كرة كبيرة تحتوى على الشحنات الموجبة. وقد إكتشف إيرنست رذرفورد وماردسون, في عام 1911 عند إجراء تجربتهم الشهيرة تجربة رقاقة الذهب, أن جسيمات ألفا من الراديوم كمصدر كانت تتشتت للخلف عند توجيهها على رقاقة الذهب, والذى أدى إلى تقبل نموذج بور, الشكل الكوكبي الذى تدور فيه الإلكترونات حول النواة بنفس الطريقة التى تدور فيها الكواكب حول الشمس. يمكن للنويات اليقيلة أن تحتوى على مئات من النيوكلونات (النيوترونات والبروتونات), والذى يعنى أنه ببعض التقريب يمكن معاملتها على أنها ميكانيكا تقليدية, أكثر من كونها ميكانيكا كمية. وفى نموذج نقطة السائل الناتج, تكون النويات لها طاقة ناتجة جزئيا من التوتر السطحي, وجزئيا من التضاد الكهربي للبروتونات. ويستطيع نموذج نقطة السائل إعادة إنتاج ظواهر عديدة للنواة, متضمنة الإتجاه العام لطاقة الترابط بالنسبة إلى عدد الكتلة, وأيضا ظاهرة الإنشطار النووي. وعموما, بالنظر لتركيب هذه الصورة التقليدية, فإن تأثيرات ميكانيكا الكم, والتى يمكن أن توصف بإستخدام نموذج الغلاف النووي, تم تطويرها كثيرا بمعرفة ماريا جيوبريت-ماير. النواة التى لها عدد معين من النيوترونات والبروتونات (الرقم السحري 2, 8, 20, 50, 82, 126, ...... ) تكون بالتحديد ثابتة, لأن أغلفتها تكون ممتلئة. وحيث أن بعض النويات تكون ثابتة أكثر من الأخرى, فإنه يتبع ذلك أن الطاقة يمكن أن تنطلق من التفاعلات النووية. مصدر طاقة الشمس الإنصهار النووي, والذى فيه تصطدم نويتين ويتحدا لإنتاج نواة أكبر. العملية العكسية هى الإنشطار النووي, والتى تمد مصانع الطاقة النووية بالطاقة. وحيث أن طاقة الترابط لكل نيوكلون هى كحد أقصى للنواة المتوسطة (تقريبا الحديد), فإن الطاقة تنطلق إما بإندماج النويات الخفيفة, أو بإنشطار النويات الثقيلة. العناصر حتى الحديد تتكون في النجوم خلال تسلسل مراحل الإنشطار, مثل سلسلة بروتون-بروتون, دورة CNO, وعملية ألفا-الثلاثية. وإرتقاء العناصر الأثقل يتكون خلال نشوء النجوم. وحيث ان ذروة طاقة الترابط لكل نيوكلون تكون تقريبا حول الحديد, فإن الطاقة تنتج فقط للعمليات الإنشطار تحت هذه النقطة. وتكوين النويات الأثقل يتطلب طاقة, وعلى ذلك فإن غمكانية حدويها خلال إنفجارات السوبرنوفا, والتى يتم إطلاق كميا هائلة من الطاقة فيها. التفاعلات النووية تحدث بطريقة طبيعية على الأرض, وفى الواقع هى شائعة الحدوث. وتتضمن إضمحلال ألفا, وإضمحلال بيتا, كما أن النويات الثقيلة مثل اليورانيوم يمكن أن يحدث لها أيضا إنشطار. كما أن هناك مثل معروف لإنشطار نووي طبيعي, والذى حدث في أوكلو, الجابون, أفريقيا منذ 1.5 بليون سنة.

محمد ابوزيد
01-14-2010, 02:13 AM
تفاصيل عملية الأنشطار النووي



يختلف الانشطار النووي عن عملية التحلل الإشعاعي من ناحية انه يمكن السيطرة على عملية الأنشطار النووي خارجيا. تقوم النيوترونات الحرة الناتجة من كل عملية انشطار إلى تحفيز انشطارات اخرى التي بالتالى تؤدي إلى تكوين نيوترونات حرة اخرى وتستمر هذه السلسلة من الفعاليات مؤدية إلى إنتاج كميات هائلة من الطاقة.

يطلق على نظائر عناصر كيميائية لها القدرة على تحمل هذه السلسلة الطويلة من الأنشطارات النووية اسم الوقود النووي. من أكثر أنواع الوقود النووي استعمالا هي اليورانيوم ذو كتلة ذرية رقم 235 (يورانيوم-235) و بلوتونيوم ذو كتلة ذرية رقم 239 (بلوتونيوم-239) ، هذين العنصرين ينشطران بصورة بطيئة جدا تحت الظروف الطبيعية التي تسمى ب الانشطار التلقائي spontaneous fission وتاخذ هذة العملية التلقائية مايقارب 550 مليون سنة على أقل تقدير ولكن عملية الانشطار هذه يتم تحفيزها والإسراع بها في المفاعلات النووية.

تنتج عادة عن سلسلة من الأنشطارات في المواد المذكورة اعلاه طاقة حركية هائلة تقدر بحوالي المئات من الكترون فولت وللتوضيح فان 0.03 الكترون فولت قادر على تدفئة منزل صغير . يرجع السبب الرئيسي في تفضيل اليورانيوم لاجراء عملية الأنشطار النووي عليه لغرض تصنيع الأسلحة النووية إلى كون النظير 235 لليورانيوم او مايسمى يورانيوم-235 خفيف الكتلة ويمكن تحفيز انشطاره بسهولة بواسطة تسليط حزمة من النيوترون عليه وبعد الأنشطار يتولد 2.5 نيوترون وهذه الكمية من النيوترون كافية لاستمرار عمليات انشطار متسلسلة و متعاقبة.

محمد ابوزيد
01-14-2010, 02:16 AM
المعجل التصادمي Colliding-Beam accelerator

يستخدم المعجل التصادمي في مجال الفيزياء النووية ذات الطاقة العالية لانتاج جسيمات جديدة من خلال تحويل اكبر قدر ممكن من طاقة حركة الجسيمات المعحلة إلى طاقة تكوبن (كتلة) لجسيمات جديدة. افترض شعاع من جسيمات مثل البروتونات تم تعجيلها لتصطدم بهدف من ذرات الهيدروجين لتنتح جسيمات جديدة X كما في المعادلة التالية:

P + P º P + P + X

يجب ان تكون طاقة الحركة اكبر من طاقة تكوين الجسيمات المنتجة ولحساب طاقة الحركة المطلوية

http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele1.jpg

http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele2.jpg

محمد ابوزيد
01-14-2010, 02:18 AM
--------------------------------------------------------------------------------

المعجل الخطي Linear accelerator

يدعى هذا المعجل باسم ليناك Linac وفيه يتم تعجيل الجسيمات المشحونة على مراحل بواسطة فرق جهد متردد كما في السينكلترون ولكن الفرق ان مسار الجسيمات المشحونة يكون في خط مستقيم حيث لا نحتاج الى المغناطيس الباهظ التكلفة. يتكون المعجل الخطي كما في الشكل التوضيحي التالي من عدة سلسلة من الالكترود ذات الشكل الاسطواني والتي ترتبط ببعضها البعض من خلال مصدر فرق جهد متردد.


http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele10.gif
تكتسب الجسيمات المعجلة طاقتها من الفجوة بين الاسطوانات نتيجة لفرق الجهد المطبق عليها وفي داخل الاسطوانة حيث لا يوجد مجال تندفع الجسيمات تحت تأثير قوة اندفاعها لفترة من الزمن تساوي نصف الزمن الدوري لفرق الجهد المتردد لحين تغير قطبية فرق الحهد المطبق على الاسطوانة التي تليها.

وتعتمد فكرة عمل المعجل الخطي على التزامن بين الطاقة التي يكتسبها الجسيم المشحون بين الاسطوانات مع المجال الكهربي المتردد المطبق على الاسطوانات ولضبط هذا التزامن فإن طول الاسطوانة يصمم بناء على سرعة الجسيمات المعجلة بعد كل مرحلة، فإذا كان نصف الزمن الدوري للجهد المطبق هو t/2 فإن طول الاسطوانة رقم n يعكى بالمعادلة

Ln = vnt/2

وطاقة الحركة المكتسبة بعد مرورها من الاسطوانة رقم n يعطى بالعلاقة

1/2 mvn2 = neVo

ومن المعادلتين السابقتين يكون طول الاسطوانة n




عند خروج الجسيمات المعجلة من الاسطوانة تتعرض إلى مجال كهربي كما في الشكل التوضيحي التالي:


http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele12.gif

مثال على المعجل الخطي هو المعجل الموجود في جامعة ستانفورد في الولايات المتحدة والذي انتج في 1967 ضمن برنامج ابحاث فيزياء الطاقة العالية وهذا المعجل يعطي الالكترونات المعجلة طاقة تصل إلى 1.2 جيجا الكترون فولت 1.2x109 eV والتجارب التي عملت بواسطة هذا المعجل على تشتت الالكترونات المعجلة لتحديد نصف قطر النواة.


http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele13.gif
معجل خطي في Los Alamos Meson Physics Laboratory يبلغ طوله نصف ميل

محمد ابوزيد
01-14-2010, 02:21 AM
معجل السكلترون Cyclotron accelerator

جهاز السنكلترون يعد جهاز حديث تم تصميمه في 1934 ويستخدم في تعجيل الجسيمات المشحونة إلى سرعات هائلة تستخدم في تجارب التصادمات النووية. وهنا ايضا يستخدم كلا من المجال الكهربي والمجال المغناطيسي لهذا الغرض.



فكرة العمل

يتكون السنكلترون من وعائين منفصلين على شكل الحرف الانجليزي D مفرغين من الهواء لتقليل احتكاك الجسيمات المعجلة مع جزيئات الهواء. يطبق فرق جهد متردد على طرفي الوعائين ويطبق مجال مغناطيسي عمودي على الوعائين كما هو موضح في الشكل



http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele7.jpg



يتم اطلاق الجسيمات المراد تعجيلها في وسط المنطقة الفاصلة بين الوعائين لتأخذ مسار دائري وتعود إلى الوسط الفاصل في فترة زمنية قدرها T/2 حيث T هو الزمن الدوي.

http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele8.gif

وبضبط تردد فرق الجهد المطبق بين الوعائين لقلب قطبيتهما ليتوافق مع وصول الجسم المشحون للمنطقة الفاصلة حيث يكون مجالا كهربياً يكسب الشحنة دفعة لتزيد من سرعته وبالتالي يزداد نصف قطر الدوران للجسم المشحون تدريجياً حتى يصل إلى نصف قطر الوعاء وعندها يخرج الجسيم المشحون من المعجل (السنكلترون) بسرعة كبيرة تعتمد على المعادلة

v = qBr/m

وهذا يعني ان سرعة الجسيمات المعجلة تتناسب طرديا مع المجال المغناطيسي المطبق وعلى نصف القطر.

اول معجل تم تصنيعه على هذا الاساس بواسطة Lawrence and Livingston في بيركلي بالولايات المتحدة في 1931 وكان نصف قطره 12.5 سم والمجال المغناطيسي 1.3 تسلا وهذا انتج بروتونات معجلة بطاقة 1.2 مليون الكترون فولت. وبعد عدة سنوات تم تطوير معجل السنكلترون ليصل نصف قطره إلى 35 سم وطاقة تعجيل البروتونات تصل إلى 10 مليون الكترون فولت. وفي نهاية 1930 تم بناء معجل سنكلترون نصف قطره 75 سم وطاقة تعجيل البروتونات تصل إلى 20 مليون الكترون فولت.

في الصورة التالية معجل سنكلترون في مختبر Argonne National Laboratory حيث يتضح المغناطيس العلوي والسفلي كذلك تظهر الصورة شعاع الجسيمات التي تنطلق من المعجل نتيجة تأينها للهواء.




http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele9.jpg

محمد ابوزيد
01-14-2010, 02:24 AM
--------------------------------------------------------------------------------

المعجل الكهروستاتيكي Electrostatic accelerator

ابسط انواع المعجلات التي تستخدم لتعجيل الجسيمات المشحونة خلال فرق جهد ثابت من خلال العلاقة E = qV حيث V فرق جهد التعجيل ويصل إلى 10 مليون فولت وq شحنة الجسيمات المعجلة وE طاقة الحركة للجسيمات. وهذا يعني ان الطاقة التي يمكن ان يكتسبها الجسيم المعجل تصل إلى 10 مليون الكترون فولت لكل وحدة شحنة وهذه الطاقة كافية لدراسة التركيب النووي للنواة.

اول معجل تم تصميمه على هذا الاساس كان في 1932 بواسطة العالمان Cockcroft and Walton حيث وصل فرق جهد التعجيل إلى 800 الف فولت واعتمد مبدأ عمله على شحن مكثفات على التوازي ومن ثم تحويلها إلى توصيل على التوالي من خلال الدائرة الموضحة في الشكل



وتسمى هذه الطريقة بمضاعفة فرق الجهد voltage multiplication ةاستخدم في اول تجربة نووية في التفاعل التالي

P + 7Li º 4He+4He

وفي الوقت الحالي فإن هذا النوع من المعجلات يعتمج على مولد فانديجراف الذي طوره العالم Van de Graaff في عام 1932




http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele3.jpg


--------------------------------------------------------------------------------

وتعتمد فكرة عمل مولد فانديجراف على مبادئ الكهربية الساكنة حيث نعلم ان الشحنة الكهربية تستقر على سطح الموصل في الحالة الكهروستاتيكية وتنقل الشحنة الكهربية من خلال حزام من مادة عازلة وفي اغلب الاحيان من الحرير ويحصل الحزام على الشحنة الكهربية من جهاز corona discharge وهو رأس مدبب من مادة موصلة مطبق عليه فرق جهد عالي يصل الى 20 الف فولت وعند الرأس المدببة حيث تزداد كثافة الشحنة علية يحدث تفريغ كهربي يعمل على تأيين الهواء فتندفع الايونات الموجبة بقوة التنافر في اتجاه الحزام المتحرك حاملاً شحنة موجبة إلى القشرة الكروية التي تشكل مكثف كهربي من مع الأرض. وهذه فكرة عمل هذا المولد فعندما يتم شحن الموصل الداخلي تنتقل الشحنة إلى القشرة الكروية المتصلة مع الموصل الداخلي كما في الشكل وتستقر الشحنة على السطح الخارجي للقشرة وتعتمد قيمة الشحنة على العلاقة

V = Q/C

حيث C سعة المكثف وQ الشحنةو V فرق الجهد الناتج ومن الناحية النظرية فإنه يمكن ان يزداد الجهد الكهربي إلى مالانهاية لان سعة المكثف لانهائية وكلما ازادادت قيمة الشحنة ازدادت قيمة الجهد ولكن من الناحية العملية فإن قيمة عالة للجهد الكهربي يوئدي إلى تأيين الهواء ويصبح موصل مما يؤدي إلى وضع حد لزيادة فرق الجهد الكهربي الممكن الحصول عليه. وللتغلب على هذه المشكلة يتم وضع مولد الفانديجراف في حاوية تحتوي على غاز عازل كهربيا مثل غاز SF6 عند ضغط 10 إلى 20 ضغط جوي



http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele4.gif
physicيمتاز مولد فانديجراف عن مولد والتن كوكفورت باثبات قيمة فرق الجهد وهذه مهمة جداً في دراسة مساحة مقطع التصادمات النووية لدراسة مستويات الطاقة النووية.

تمتلك العديد من الجامعات الامريكية والمراكز البحثية مولد الفانديجراف


حيث نلاحظ على اليمين من الصورة مولد الفاندجراف داخل مستودع يحتوي على غاز عازل والجسيمات المعجلة تنطلق داخل الانبوب وفي الوسط مغناطيس يعمل على دوران الجسيمات المعدلة باتجاه الهدف على يسار الصورة.



من المولدات المتطورة المعتمدة على مولد فانديجراف مولد تاندم فانديجراف Tandem Van de Graaff والموضح في الشكل التخطيطي التالي:


http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele6.gif
ويمكن الحصول على فرق جهد 20 مليون فولت ويستخدم هذا المعجل في دراسة تفاعل الأيونات الثقيلة. ونلاحظ على يسار الصورة المغناطيس الذي يعمل على حرف الجسيمات المعجلة وكذلك المغناطيس الذي يعمل على توجيه الجسيمات إلى عدة مسارات مختلفة لكل مسار يخصص تجربة محددةs

محمد ابوزيد
01-14-2010, 02:28 AM
المعجلات النووية

Nuclear Accelerators



ان الهدف من المعجل هو توجيه الاجسام المشحونة في شكل شعاع باكسابه طاقة حركة باتجاه الهدف من خلال تطبيق مجالات كهربية ومغناطيسية وهناك عدة انواع من هذه المعجلات



يتكون المعجل بصفة عامة من مصدر للجسيمات المشحونة مثل الكترونات منبعثه من فتيلة ساخنة او من ذرات متأينة حيث تنطلق هذه الجسيمات المشحونة تحت تأثير فرق جهد كهربي يتراوح من إلى 10 مليون فولت. يتم تحديد مسار هذه الجسيمات المعجلة لتكون شعاع ينطلق باتجاه الهدف, ويكون داخل المعجل مفرغ من الهواء (تحت ضغط منخفض) لتفادي تشتت الجسيمات المعجلة عند تصادمها مع ذرات الهواء.

تصنف المعجلات إلى ثلاثة اقسام بناء على الطاقة المستخدمة للتعجيل وهي على النحو التالي:

(1) المعجلات المنخفضة الطاقة: حيث تنتج جسيمات معجلة بطاقة تصل تتراوح بين 10 إلى 100 مليون الكترون فولت وفي اغلب الاحيان تستخدم هذه المعجلات لدراسة تشتت الجسيمات المعجلة بتفاعلها مع مادة الهدف

(2) المعجلات ذات الطاقة المتوسطة: حيث تنتج شعاع من الجسيمات المعجلة بطاقة تفوق 100 مليون الكترون فولت لتصل 1000 مليون الكترون فولت. وعند هذه الطاقة يتم دراسة تصادم النيوكليونات مع أنوية العناصر وقد سنتج عن هذه التصادمات توليد جسيمات اخرى مثل الميونز وفي هذا المعجلات يتم دراسة القوى النووية والتحقق تركيب النواة.

(3) المعجلات ذات الطاقة العالية: وهي تنتد شعاع من الجسيمات المعجلة بطاقة تفوق 1000 مليون الكترون فولت. ويكون الغرض من هذه المعجلات هو انتاجح جسيمات جديدة من خلال اصطدام هذه الجسيمات المعجلة بأنوية العناصر ومن ثم دراسة خصائص الجسيمات الناتجة

وقد تم تصميم معجلات نووية تصل طاقة التعجيل فيها إلى 10000000 الكترون فولت.



http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/particlesmash.gif


الاجزاء الرئيسية

(1) مصدر الجسيمات المشحونة Ion source: وهو المصدر الرئيسي للجسيمات المعجلة ويتكون من غاز متأين بواسطة التفريغ الكهربائي ويتم استخلاص الجسيمات ذات الشحنة الموجبة من خلال الكترود سالب ذو جهد 10000 فولت.

http://www.hazemsakeek.com/Scientifc_Assay/physics/physimages/accele1.gif

(2) ناقل الشعاع beam optics: وهو عبارة عن عدد من الموجهات المكونة من اجهزة كهربية ومغناطيسية لتوجيه الجسيمات المعجلة في المسار المحدد لها داخل المعجل وهي بمثل العدسات في الضوء وتعتمد على قوة لورنز Lorentz force

F = q(vxB)

(3) الهدف Target: وهو المادة التي توضع في نهاية المعجل بهدف التجربة تحت الدراسة فمثلاً تجربة nuclear spectroscopy حيث يتم دراسة مستويات الطاقة ومساحة المقطع فإن الهدف في هذه الحالة يكون شريحة سمكها 10ميكرون، اما في حالة دراسة انتاج جسيمات ثانوية من تصادم الانوية المعجلة مع الهدف فإن الهدف يكون سميك يصل سمكه إلى 10 سنتميتر بحيث يمتص طاقة الجسيمات المعجلة. وفي كلا الحالتين يتم تبريد الهدف حتي لاتتغير درجة حرارته مع تصادم الجسيمات المعجلة معه.

(4) الكاشف Detector وهي الجزء الأساسي الذي تعتمد عليه القياسات المراد الحصول عليها من التجربة مثل تحديد نوعية الجسيمات الناتجة من التصادم وطاقتها وزمن بقاءها وتوزيعها الزاوي وهذه الكواشف علم قائم بحد ذاته وسنخصص مقالاً منفصلا للحديث عنها.

أنواع المعجلات



(1) المعجل الكهروستاتيكي Electrostatic accelerator

(2) معجل السكلترون Cyclotron accelerator

(3) المعجل الخطي Linear accelerator

(4) معجل السنكتورن Synchrotrons

(5) المعجل التصادمي Colliding-Beam accelerator

محمد ابوزيد
01-14-2010, 02:30 AM
منظومات السلامة :

في حالات الطوارىء هناك رد فعل اسقاط قضبان السيطرة تحت تأثير الجاذبية و في الحالات التي لا يمكن إيلاج هذه القضبان فإن مفاعلات الكاندو المبكرة الصنع تمتلك وسيلة لتصريف المهدىء أما المفاعلات الحديثة فقد عوض عن ذلك بمنظومة ضخ سريع للكادميوم إلى داخل المهدىء

وفي حالة حدوث تشقق في منظومة تبريد المفاعل فان الصمامات تنغلق لعزل المنظومة السليمة ، والماء الخفيف في حوض الخزن يتم ضخه الى المنظومة المتشققة

النترونية _ استخدام الوقود _ اشتغال المفاعل :

تمتاز مفاعلات الكاندو بميزة اعادة تحميل الوقود اثناء اشتغال المفاعل و بصورة تقريبية ينتج 2.1 نترون بعد امتصاص نترون واحد من قبل مادة انشطارية ويكون مصيرها :

0.79 تقتنص من قبل المادة الخصبة مؤدية الى انتاج مادة قابلة للانشطار .

0.02 يمتص من قبل الماء الثقيل .

0.22 يمتص من قبل المواد الداخلة في تركيب القلب ونواتج الانشطار.

0.06 يمتص من قبل مواد اخرى متضمنا سموميات السيطرة .

0.04 تفقد بسبب التسرب .

محمد ابوزيد
01-14-2010, 02:31 AM
المنظومات المساعدة :

منظومة كيمياء وسيطرة الحجم والتبريد عند اطفاء المفاعل مماثلة لمنظومات (pwr) ما عدا الاختلافات المطلوبة لحالة فصل المبرد عن المهدئ .

منظومة تنظيف المهدئ تقوم بالسيطرة على الشوائب وتتضمن القابلية على ازالة البورون و الكادميوم وسموم النترونات .

منظومة تنقية المبرد تأخذ الجريان من مخرج المضخة الاولى وترجعه الى مدخل المضخة حيث تستعمل للتصفية والمبادل الايوني لازالة الشوائب ، وبسبب الكلفة الباهظة للماء الثقيل100 دولار لكل واحد كيلو غرام

فان بناية المفاعل تحتوي على منظومات للجمع و التنقية والمحافظة على نقاوة الماء الثقيل

محمد ابوزيد
01-14-2010, 02:32 AM
--------------------------------------------------------------------------------

مفاعل الماء الثقيل
hwr



يستعمل الماء الثقيل هنا كمهدئ أو كمبرد أو كلاهما ،لأن الماء الثقيل يمتص عدد أقل من النترونات فيما لو كان الماء اعتيادي ، وبسبب هذا الامتصاص الأقل وبسبب أن الماء الثقيل الى حد ما أقل تهدئة من ناحية التأثير فانه من الملا ئم والمفيد أن تكون هناك مسافة أوسع بين حزم الوقود عما كانت عليه في (cando) ،هذا يقود الى امكانية وجود قنوات وقود سمكها بسمك حزمة واحدة ومبردة بصورة منفردة مع احاطة القنوات بمهدئ من الماء الثقيل.

هذه المفاعلات تستخدم الماء المضغوط في منظومة التبريد الابتدائي ويحتمل أن يكون المبرد هو الماء الثقيل نفسه لهذه المفاعلات نوعين من ناحية التصميم والتصنيع :

1-cando : مطروح من قبل هيئة الطاقة الذرية الكندية ،(cando) تعني مفاعل(يورانيوم- دتيريوم) الكندي .

2- مفاعل الماء الثقيل المولد للبخار sghwr (بريطاني)

الأولى تستعمل الماء الثقيل كمهدئ ومبرد ومن الممكن أن يستعمل موائع أخرى مبردة ويأخذ بعين الاعتبار نوعين من الموائع :

الماء الاعتيادي حيث أنه أقل كلفة من الماء الثقيل والمائع العضوي الذي يمكن أن يعمل على درجات حرارية أعلى لتحسين الكفاءة الحرارية لمحطة القدرة .

الثانية تستعمل الماء الاعتيادي كمبرد في أنابيب الضغط العمودية ، مغمورة في الماء الثقيل الذي يعمل كمهدئ حيث يسمح لغليان المبرد.

محمد ابوزيد
01-14-2010, 02:34 AM
فترة نصف العمر لليورانيوم


--------------------------------------------------------------------------------

عنصر اليورانيوم ذو نشاط إشعاعي، إذ أن ذراته تتفتت ببطء مطلقة طاقة في شكل إشعاع حيث تبلغ فترة نصف العمر له حوالي ( 7^10 * 4.9 )سنة بالنسبة إلى (نظير ذري 235)، و حوالي ( 8^10 * 7.04) سنة بالنسبة إلى (نظير ذري 238).

عملية الأنشطار النووي لليورانيوم

في حالة استخدام اليورانيوم في الأغراض السلمية يجب أن لا تتعدى نسبة اليورانيوم المخصب عن 4 بالمائة. وعامل التحفيز النيوتروني يجب أن يكون أقل من الواحد أما في حالة أستخدامه في الحالات التفجيرية يجب أن يصل نسبة اليورانيوم المخصب إلى 80 بالمائة وعامل التحفيز النيتروني يجب أن يكون أكبر من الواحد، حيث إن عامل التحفيز النيتروني هو عدد النيترونات المستخدمة في انشاء سلسلة التفاعلات chain reaction في المفاعل النووي.

محمد ابوزيد
01-14-2010, 02:35 AM
اهم نظائر اليورانيوم



(نظير ذري 235) وهو قابل للانشطار (fissile ) ويتواجد في خام اليورانيوم بنسبه صغيره 0.7 بالمائة و يستخدم في المفاعلات النووية وتصنع منه القنابل الذرية والهيدروجينية الاندماجية والانشطارية.





(نظير ذري 238) ويتواجد في الخام بنسبة كبيره 99.3 وهو غير قابل للانشطار (non fissile) وهو مايتم تخصيبه للاستخدام في المفاعلات النووية و يستخدم في الدراسات والتشخيص ويستعمل أيضاً في تحسين الزراعة والعلاج الكيماوي ويستخدم في تتبع وصول الدواء لاماكنه داخل الجسم الحي.





(نظير ذري 234) ويتواجد كشوائب داخل الخام بالاضافة إلى (نظير ذري 233) ويستخدم في المفاعلات المولدة للوقود النووي breeder reactor.

محمد ابوزيد
01-14-2010, 02:36 AM
خام اليورانيوم



--------------------------------------------------------------------------------

اولا يتم تكسير الخام إلى قطع صغيرة ثم يتم تجميعها عن طريقة الطفو باستخدام حمض الفوليك, ثم يتم تحميصها في الهواء حتي يتم تحوليها إلى الأكاسيد المقابلة, بعد ذلك يتم تصفيتها في مزيج من حمض الكبريتيك وبرمنجانات البوتاسيم حتى نتأكد من أكسدة اليورانيوم الموجود بالخام يتم ترسيب اليورانيوم بأضافة هيدروكسيد الصوديم حتي يتحول الي الصيغه غير الذائبه (Na2U2O7) ويطلق عليها اسم الكعكة الصفراء yellow cake, بعد ذللك يتم اضافة حمض النيتريك حتى يتحول إلى نترات اليورانيم UO2(NO3)2 (H2O)nالذي يتم أمرار بخار الفلور عليه متحولا إلى بخار من فلوريد اليورانيم (UF4) ثم يتم استخلاص اليورانيوم النقي بواسطة الاختزال عن طريق عنصر الكالسيوم ويتم استخلاص نظائر اليورانيوم أيضا بطريقة مماثلة.

محمد ابوزيد
01-14-2010, 02:36 AM
--------------------------------------------------------------------------------

الوقود النووي تركيب من التراكيب الخمسة للمفاعل النووي ويستخدم اليورانيوم بكمية تكفي لحدوث التفاعل المتسلسل ويكون على شكل كرات صغيرة من اكسيد اليورانيوم زيدت فيه نسبة نظير اليورانيوم235 إلى 3% عن الموجود في الطبيعة والتي تبلغ 0,7% بالنسبة لباقي نظائر اليورانيوم ويوضع الوقود في أنابيب واقية مصنوعة من إحدى سبائك الزركونيوم.

محمد ابوزيد
01-14-2010, 02:37 AM
المفاعلات النووية



--------------------------------------------------------------------------------

المفاعلات النووية عبارة عن منشآت ضخمة يتم فيها السيطرة على عملية الأنشطار النووي حيث يتم الأحتفاظ بالأجواء المناسبة لأستمرار عملية الأنشطار النووي دون وقوع انفجارات اثناء الأنشطارات المتسلسلة. تسنخدم المفاعلات النووية لأغراض توليد الطاقة الكهربائية و تصنيع الأسلحة النووية و ازالة الأملاح والمعادن الأخرى من الماء للحصول على الماء النقي و تحويل عناصر كيميائية معينة إلى عناصر اخرى وخلق نظائر عناصر كيميائية ذات فعالية اشعاعية واغراض اخرى. يعتبر أنريكو فيرمي عالم في الفيزياء من إيطاليا والذي حاز على جائزة نوبل في الفيزياء عام 1938 و غادر إيطاليا بعد صعود الفاشية على سدة الحكم واستقر في نيويورك في الولايات المتحدة من اوائل من اقترحوا بناء مفاعل نووي حيث اشرف مع زميله ليو زيلارد Leó Szilárd الذي كان يهوديا من مواليد هنغاريا على بناء أول مفاعل نووي في العالم عام 1942 وكان الغرض الرئيسي من هذا المفاعل هو تصنيع الأسلحة النووية. في عام 1951 تم وللمرة الأولى انتاج الطاقة الكهربائية من مفاعل أيداهو في الولايات المتحدة. يتوقع بعض الخبراء نقصا في الطاقة الكهربائية في المستقبل البعيد نتيجة ظاهرة انحباس حراري سببتها أنشطة بشرية مثل تكرير النفط ومحطات الطاقة وعادم السيارات وغيرها من الأسباب وهناك اعتقاد سائد ان الطاقة النووية هي السبيل الأمثل لسد هذا النقص في المستقبل. لمعرفة الدول ذات القدرة النووية يرجى مراجعة المقال الرئيسي سلاح نووي.

محمد ابوزيد
01-14-2010, 02:40 AM
الاشعاع



--------------------------------------------------------------------------------

الإشعاع طاقة تطلق في شكل موجات أو جسيمات صغيرة من مادة ما وله أشكال عديدة مثل الأشعة السينية وأشعة جاما والإشعاع الصادر عن المفاعلات النووية والضوء بحد ذاتة أشعاع.

محمد ابوزيد
01-14-2010, 02:41 AM
بلازما الاندماج


بلازما الإندماج عندما تصل الحرارة الدرجة التي يحصل فيها الإندماج، تكون المادة في حالة بلازما. إنها حالة خاصة للمادة الأولية، تكوّن فيها الذرات أو الجزيئات غازا أيونيا. لقد تم إقتلاع إلكترون أو أكثر من السحابة الإلكترونية المحيطة بكل نواة، مما ينتج عنه أيونات موجبة و إلكترونة طليقة، و يكون الكل محايدا كهربيا. ينتج عن التحرك الكبير للأيونات و الإلكترونات داخل بلازما حرارية، عدة اصطدامات بين الجسيمات. و لكي تكون هذه الإصطدامات قوية بما فيه الكفاية لإنشاء تفاعل اندماجي، تتدخل ثلاث عوامل : الحرارة T ; الكثافة N ; زمن الاحتجاز τ. حسب لوسون فإن العامل Nτ يجب أن يصل حدا فاصلا للحصول على الـ breakeven حيث تكون الطاقة الناتجة عن الاندماج مساوية للطاقة المستخدمة. يحدث الإيقاد، إثر ذلك، في مرحلة أكثر إنتاجا للطاقة (من غير الممكن إيجادها اليوم في المفاعلات الحالية). إنه الحد الذي يكون التفاعل إثره قادرا على المواصلة من تلقاء ذاته. لتفاعل ديتوريوم + تريسيوم، يقدّر هذا الحد بـ 1014 ث/سم³.

محمد ابوزيد
01-14-2010, 02:41 AM
الاندماج المتحكم فيه
يمكن التفكير في عدة طرق تمكّننا من احتجاز محيط التفاعل للقيام بتفاعلات اندماج نووية، من ذلك الاندماج عبر الاحتجاز المغناطيسي و غيره. و لكن لا يوجد إلى حد الآن مادة يمكنها احتجاز الطاقة الهائلة للاندماج النووي، لاستعمالها في أغراض صناعة الطاقة الكهربائية.
و من التطبيقات الأخرى للاندماج، إنتاج النوترونات، و ذلك بالأساس لاكتشاف المتفجّرات، و هو ما تم استخدماه منذ زمن بعيد في النطاق الصناعي.
الاندماج بالاحتجاز المغناطيسي



التوكاماك، حيث يحتجز خليط من مماثلات الهيدروجين بواسطة حقل مغناطيسي.

الستيلاتور، حيث تؤمن الحواث (inductors) الاحتجاز بالكامل.

محمد ابوزيد
01-14-2010, 02:42 AM
آلية الاندماج


آلية الاندماج يحدث تفاعل الاندماج النووي عندما تتداخل نواتان ذريتان. لكن، ليتم هذا التداخل، لا بد من أن تتخطى النواتان التنافر الحاصل جراء شحنتيهما الموجبتين (و تعرف الظاهرة بالـحاجز الكولومبي). إذا ما طبقنا قواعد الميكانيكا الكلاسيكية وحدها، سيكون احتمال الحصول على اندماج الأنوية منخفضا للغاية، بسبب الطاقة الحركية (الوافقة للهيجان الحراري) العالية جدا اللازمة لتخطي الحاجز المذكور. و في المقابل، تقترح ميكانيكا الكم، و هو ما تؤكده التجربة، أن الحاجز الكولومبي يمكن تخطيه أيضا بظاهرة النفق، بطاقات أكثر انخفاضا. و بالرغم من ذلك، فإن الطاقة اللازمة للاندماج تبقى مرتفعة جدا، و هو ما يقابله حرارة أكثر من عشرات أو ربما مئات الملايين من الدرجات المئوية حسب طبيعة الأنوية. داخل الشمس، على سبيل المثال، يجري تفاعل اندماج الهيدروجين المؤدي، عبر مراحل، إلى إطلاق الهليوم، في ظل جرارة تقدر ب 15 مليون درجة مئوية، و لكن ضمن تفاعلات مختلفة عن تلك التي تدرس على الأرض لإنتاج الطاقة عبر الاندماج. و في بعض النجوم الأكثر كتلة، تتم عمليات اندماج لأنوية أضخم، تحت درجات حرارة أكبر. عندما تندمج أنوية صغيرة، تنتج نواة غير مستقرة، و لكي تعود إلى حالة أكثر استقرارا ذات طاقة أقل، يتم إطلاق جسيم أو أكثر (فوتون، نوترون، بروتون، أو نواة هيليوم، حسب التفاعل)، و تتفرّق الطاقة الزائدة بين النواة و الجسيمات المطلقة، في شكل طاقة حركيّة. و لكي يكون الاندماج ذا مردود جيد من الطاقة، ومن الضروري أن تكون الطاقة الناتجة أكير من الطاقة المستهلكة لتواصل التفاعلات و في الحرارة الخارجة إلى المحيط الخارجي. كما يجب منع أي اتصال بين محيط التفاعل و مواد المحيط في المفاعلات الاندماجية. عندما لا يوجد أي وضع مستقر، تقريبا، قد يكون من المستحيل أن نقوم بإدماج نواتين (على سبيل المثال : 4He + 4He). اندماج نووي.إن التفاعلات الاندماجية التي تطلق أكبر قدر من الطاقة هي تلك التي تستخدم أكثر الأنوية خفّة. و بالتالي فإن أنوية الدويتيريوم (بروتون واحد ونوترون واحد) والتريتيوم (بروتون واحد و نوترونان)، مستخدمة في التفاعلات التالية : دويتيريوم + دويتيريوم -> هيليوم 3 + نوترون دويتيريوم + دويتيريوم -> تريتيوم + بروتون دويتيريوم + تريتيوم -> هيليوم 4 + نوترون دويتيريوم + هيليوم 3 -> هيليوم 4 + بروتون و هذه التفاعلات هي أكثر التفاعلات دراسة في المخابر عند تجارب الاندماج المراقبة.

محمد ابوزيد
01-14-2010, 02:43 AM
الاندماج النووى

تفاعل الاندماج النووي (يعرف أيضا بالـ تيرمونووي) هو،بالإضافة إلى الانشطار، أحد أهم أنواع التفاعلات النووية التطبيقية. لا يجب خلط الاندماج النووي باندماج القلب في مفاعل نووي و هو حادث نووي خطير جدا.




الاندماج النووي عملية تتجمع فيها نواتان ذريتان لتكوين نواة واحدة أثقل. اندماج الأنوية الخفيفة يطلق كميات هائلة من الطاقة المتأتية من التجاذب بين مكونات النواة بسبب التآثر القوي.
هذا التفاعل موجود في الشمس و في بعض النجوم الأخرى في الكون.
فائدة الاندماج النووي تكمن في إطلاقه كميات طاقة أكبر بكثير مما يطلقه الانشطار و بكتل مواد متساو. و بالاضافة إلى ذلك، فإن المحيطات تحتوي بشكل طبيعي على كميات كافية من الدويتريوم لتغذية الكوكب بالطاقة لمدة آلاف السنين، كما أن المواد المنبعثة عن الاندماج (خصوصا الهيليوم 4)، ليست موادا مشعّة.
و على الرغم من العدد الكبير من التجارب التي تم القيام بها في كل أنحاء العالم منذ خمسين سنة، فإنه لم يتم التوصل إلى أية نتيجة تطبيقية فعّآلة للاندماج على صناعة الطاقة، خارج الميدان العسكري بابتكار القنبلة الهيدروجينية. لكن يوجد، في المقابل، استعمالات أخرى أقل صيتا، كمولدات النيوترونات المستعملة بالأساس في الكشف عن المتفجرات

محمد ابوزيد
01-14-2010, 02:43 AM
الانشطار النووى


--------------------------------------------------------------------------------

عملية الأنشطار النووي لليورانيوم

الأنشطار النووي Nuclear fission هي عملية انشطار نواة ذرة ما إلى قسمين او أكثر ويتحول بهذه العملية مادة معينة إلى مادة اخرى وينتج عن عملية الأنشطار هذه نيوترونات و فوتونات حرة( بالاخص اشعة گاما) ودقائق نووية مثل دقائق ألفا alpha particles ودقائق بيتا beta particles. يؤدي انشطار العناصر الثقيلة إلى تكوين كميات ضخمة من الطاقة المتحركة.

تستعمل عملية الأنشطار النووي لتزويد الوقود لمولدات الطاقة النووية وتحفيز انفجار الأسلحة النووية واذا امكن اخضاع عنصر ثقيل إلى سلسلة من الأنشطارات النووية فان ذلك سيؤدي إلى تكوين ما يسمى بالوقود النووي ويتم تحفيز هذه السلسلة المتاعقبة من الأنشطارات النووية في المفاعلات النووية ويعتبر اليورانيوم-235 و البلوتونيوم - 239 من أكثر انواع الوقود النووي استعمالا. تبلغ كمية الطاقة الناتجة من كمية معينة من الوقود النووي ملايين اضعاف الطاقة الناتجة من نفس الكمية من البنزين.

محمد ابوزيد
01-14-2010, 02:46 AM
طاقة الاندماج


--------------------------------------------------------------------------------

طاقة الاندماج ويتركز حديثنا عن الاندماج المنتج للطاقة، إلا أن الحصول على طاقه الاندماج يتطلب منا إسهاما أوليا يستثمر في التغلب على قوى التدافع الكهربائي بين البروتونات، وهي القوى التي تمانع حد، وث الاندماج بمعاكستها الشديدة لفعل تقارب النوى كي تتفاعل. إن وأس المال اللازم لهذا الاستثمار في مجال إنتاج الطاقة يختلف باختلاف تفاعل الانلاماج المعتمد، وعلى وجه الدقة إنه يتناسب حسب قانون كولون مع جداء (حاصل ضرب) شحنتي النواتين المندمجتين. ويمكن القول عموما إن مقدار الاستثمار كبير جدا (مليارات الدولارات)، رلكن نسبة الربح وسطيا أكبر بأربعة آلاف مرة، وهي تستحق البذل حقا، ولكنه بذل لم تقدم عليه ألا الدول المتطورة القوية الغنيه الواعية، ويمكن أن تقدم عليه الدول النامية المتضافرة لتوفير أسباب النجاح. فمن وجهة نظر البذل اللازم تقديمه يعد اندماج نراتي الهيدروجين الثقيل للحصول على الهيليوم، الاندماج الأكثر أهمية للبحث المختبرى، لأنه يقدم أكبر كسب في الطاقة في مقابل أقل بذل (أو كما يقال أقل رأس مال للاستثمار). وهذه الطاقة تمتص رويدا رويدا في أوساط مناسبة متوزعة بين ذرات الوسط مولدة ما سميناه الحرارة التي كما نعلم يمكن أن تولد البخار والبخار بدوره يمكن أن يدير العنفات مولدا الطاقة الكهربائية. والسؤال الآن كيف يمكن استدار هذا المورد الثري؟

محمد ابوزيد
01-14-2010, 02:46 AM
--------------------------------------------------------------------------------

طاقة الارتباط واستقرار النوى

يتجلى تماسك النواة لنا بفارق دقيق هو أن النواة أقل وزنا من مركباتها. يتضح من قياسات كتل البروتونات والنترونات المكونة للنواة أنها أكبر من مجموعها دوما من كتلة نواة الذرة التي تشكلها، مهما كانت هذه الذرة وهذا الفارق هو ما يسمى عادة نقص الكتلة. وتقول النظرية النسبية إن هذا النقص في الكتلة يتحول إلى طاقة وفقا للعلاقة الشهيرة الطاقة = الكتلة * مربع سرعة الضوء، وهذا النقص يقابل ما يدعي طاقة ارتباط النواة، أي طاقة ارتباط مكونات النواة، وهي أيضاً الطاقة اللازم بذلها لتفكئك هذه النواة إلى مكوناتها

تنتج الطاقة النووية إذن من انشطار النوى الثقيلة أو من اندماج النوى الخفيفة، فهاتان عمليتان تؤديان إلى نقص الكتلة، ومن ثم إلى إنتاج الطاقة الحركية (لحرارية).

محمد ابوزيد
01-14-2010, 02:47 AM
فيزياء فيرمى


فيزياء فيرمي كان العالم فيرمي ( Enrico Fermi) في العام 1934 يقوم ببعض التجارب للحصول على نظائر العناصر عن طريق قذف النوى بالنيوترونات . وعندما وصل إلى عنصر اليورانيوم ( العنصر الأخير في الجدول الدوري في ذلك الوقت ) . توقع أن قذف العنصر بالنيوترونات سيؤدي إلى وجود نواة غير متسقرة تقوم بإطلاق جسيمات بيتا وبالتالي ازدياد العدد الذري من 92 إلى 93 وانتاج عنصر جديد في الجدول الدوري , ولكنه لم يحصل على ما توقعه ولم يستطع التعّرف على نواتج التفاعل.

واستمرت الأبحاث والدراسات من العام 1935 إلى العام 1938 حيث قام عالم كيميائي ألماني يسمى إدا نوداك
( Ida Noddack) بالتعرف على نواتج التفاعل وأوضح أن نواة اليورانيوم انشطرت إلى نواتين متوسطتي الكتلة . وقد أكدت الدراسات صحة ما افترضه هذا العالم . وبذلك يكون الإنشطار النووي :
" انقسام نواة ثقيلة إلى نواتين متوسطتي الكتلة , وانتاج كميات هائلة من الطاقة نتيجة تفاعل نووي "
ولإحداث الإنشطار تقذف النواة الثقيلة مثل ( يورانيوم ـ 92 /235 ) بجسيمات خفيفة نسبياً مثل النيوترونات التي تعد أفضل القذائف لأنها لا تحمل شحنة .

محمد ابوزيد
01-14-2010, 02:47 AM
هياج حراري للتصادم

وقبل استغلال النواتج لتفريغ طاقتها والحصول على الحرارة أو الكهرباء يلزم تحريض تفاعل الاندماج بحد ذاته، والتغلب على عوق قوي التجاذب الكهربي له، وذلك كما قلنا بتقدي الاستثمار الأولى الذي لابد منه والذي يكفي لتحقيق هذا التفاعل في مزيج نظيري الهيدروجين: الدوتيريوم والنريتيوم. من الواضح أنه ربما يتم لنا ذلك ببساطة عند تقديم الاستثمار المطلوب على شكل حرارة، إذ أن الحرارة تولد في المزيج حركة عشوائية (هياجا حراريا) وقد يصادف عندئذ تتصادم نواتان جبهيا فتبلغ إحداهما الأخرى بطريق مباشر مخترقة الفراغ الكبير في الذرة ومتهحدية التدافع الكهربائي بين النواتين، وتتلخص المسألة في مجملها بمجرد التسخين إلى الدرجة الكافية لتحقيق تلامس (أو تصادم) النوى. ويتطلب تحقيق ذلك كثيرا من الطاقة الحرارية التي تتوزع عشوائيا بين مزيج الذرات أو الجزيئات؟ أما الحصول على الطاقة الحركيه (الاندفاعية) اللازمة لبدء تحقيق اندماج الدوتيريوم والتريتيوم، فتقتضي رفع درجة الحرارة إلى 40 مليون درجة. وهنا قد يتاح لبعض الذرات اقتراب بضعها من بعض حتى يضعه فرميات، وهذا الاقتراب إن حدث يجعل القوى النووية تفعل فعلها محدثة الاندماج المطلوب. ويرى المختصون أن زيادة مردود الاندماج ترفع درجة الحرارة إلى مائه مليون درجة.

محمد ابوزيد
01-14-2010, 02:49 AM
الذرات تتحول الى بلازما


الذرات تتحول إلى بلازما والسؤال هنا كيف يمكن بلوغ هذه الدرجة من الحرارة وكيف يكون حال المادة في مثل هذه الدرجات العالية؟ طبعا لن تكون صلبة ولا سائلة ولا غازا عاديا، بل ستكون بالحالة التي تسمى بلازما، والبلازما حالة تكون فيها نوى الذرات في أعلى درجات التأين اي عارية من إلكتروناتها. وهذه في الواقع هي الحالة العادية للمادة في درجات الحرارة التي تفوق عشرة آلاف درجة، وهذه درجة لا نراها على الأرض إلا في الصاعقة أو القوس الكهربائية أو في الانفراغ الكهربائي؟ وإن كانت هي. اكثر الحالات أنتشارا في الكون من حولنا، إذ ليست الشمس والنجوم إلا كرات هائلة من البلازما الساخنة. تبقى البلازما في النجوم متماسكة رغم قوى التنافر بين مركباتها بفعل القوى التناقلية الكبيرة التي تحصرها وتشدها اليها مثلما تمسك الأرض بالغلاف الجوي حولها، ولكن أنى لنا هذا على سطح الأرض؟ وكيف وأين وفي أي وعاء يمكن احتواء هذه البلازما وجعلها ملتمة بعضها إلى بعض؟. فكل قدرأو وعاء نضعها فيه في درجة الحرارة اللازمة للاندماج (أكثر من 40- 100 مليون درجة) لكل مادة أو آنية نعرفها تنصهر بل وتتبخر متحولة إلى غازبل إلى بلازما، هنا بيت القصيد أو هذا هو جوهر معضلة الاندماج المطروحة حاليا على العلم والتكنولوجيا. وفي الحقيقة لا يكفي أن نولد البلازما المحصورة فقط، وهذا بحد ذاته ليس أمرا يسيرا، بل يجب إتاحة الوقت الكافي للتفاعل كي يحدث ومن ثم للطاقة كي تنتج. فالوصفة الكاملة للاندماج المسيطر عليه تتلخص في تسخين البلازما إلى درجة عالية وتركها ومنا كافيا (بضع ثوان) كي تنضج، إذ لو كان عدد التفاعلات التي تجري في البلازما قليلا جدا تكون الطاقة المستردة غير كافية لبلوغ ما يسمى "الحصيلة المعدومة" أي لبلوغ التوازن الشامل ما بين الطاقة المصروفة لتحريك التفاعل (رأس مال الأستثمار) وبين الطاقة الناتجة عن تفاعلات الاندماج.

محمد ابوزيد
01-14-2010, 02:50 AM
حصر البلازما

حصر البلازما والخلاصة أنه يلزم عزل البلازما حراريا وعدم السماح لها بأن تبرد بتماسها مع جدران حاويتها لمناسبة إن وجدت. ولكن السؤال مرة أخرى ما هي مدة العزل اللازمة؟ تتدخل في الإجابة عن هذا السؤال عوامل رئيسية ثلاثة، والشيء المقبول الذي يمكن الأخذ به هو حاصل ضرب هذه العوامل فيما بينها، العامل الأول كما أوضحنا هو درجة حرارة البلازما T ، والثاني هو كثافة البلازما N أي عدد نوى الدوتوريوم والتريتيوم في وحدة الحجم. وأخيرا زمن احتباس البلازما، أي الزمن الذي يبقى قلب البلازما خلاله بتماس مع نفسه. فهذه أمور تتدخل بدهيا بالشيء المطلوب، فالأول يكسب النوى السرعة اللازمة للتصادم والثاني يزيد عدد النوى في طريقها، ويزيد من ثم احتمال التصادم مع النوى المجاورة، والأخير يتيح الزمن اللازم ، للتفاعل، فلكل هذه العوامل أهميتها الأساسية ولابد أن يكون متأثرا بها جميعا، أي متأثرا بحاصل ضربها فيما بينها أي بالجداء T.n.z المسمى جداء الأندماج. ويدل الحساب أنه يكفى بلوغ القيمة: واحد (ضغط جوي X ثانية) كي يتحقق ما أسميناه "الحصيلة المعدومة" أي بلوغ نقطة التعامل في موازنة الطاقة، إلا أن بلوغ هذا الهدف يعد مرحلة أولى لأن الهدف الذي نسعى إليه هو بلوغ الإنتاج المجدي للطاقة، أي الاستمرار حتى بلوغ ما يسمى مرحلة الاحتراق أي المرحلة التي تصبح معها تفاعلات الاندماج مستديمة ذاتيا (مستمرة من تلقاء نفسها) ويتوقع عند استتباب هذا النظام أن تعود نوى الهيليوم (ناتج الاندماج) بما تحمله من طاقة إلى داخل البلازما كي توفر استمرار حرارتها وتضمن بقاءها في درجة الحرارة اللازمة للتفاعل. وعند تحقق هذا يكون لدينا ببساطة قطعة من نجم ملتهب تغذينا بأفضل أنواع الطاقة النظيفة نسبيا، والتي لا ينضب معينها ما دمنا قادرين على استخلاص الدوتيريوم من هيدروجين الأرض (صناعة الماء الثقيل مثلا) لأن الهيدروجين العادي يصلح للاندماج أيضا، ولكنه أضعف عطاء للطاقة بأربع مرات تقويبا.

محمد ابوزيد
01-14-2010, 02:50 AM
--------------------------------------------------------------------------------

قدور الاندماج

من كل ما تقدم يتضح سبب السعي الدءوب اللاهث الذي تقوم به الدول المتطورة الغنية راصدة ملايين الدولارات لتحقيق هذا الهدف العظيم بالتغلب على صعوبة. تحقيق الاحتراق والسيطرة على تماسك البلازما وعلى الحرارة الهائلة الناتجة.

أما أين يقف العالم المتطور الآن بأبحاثه هذه؟ وما هي النجاحات التقنية التي حققها في هذا المضمار؟، فيتضح من البحث في السبل الأساسية المتبعة لتحقيق هذه الغاية وتحديدا في "قدور" الاندماج التي تحققت لإنسان عصرنا، عصر الذرة أنه يمكن في الحقيقة الوقوف عند خمسة أنواع أساسية منها وهى:
1- التوكوماكات: منها التوكوماك (jet) الذى نجح نجاحا جيدا على طريق الحصيلة المعدومة. والتوكوماك (net) ، المشروع الأوربي الصرف، والمفاعل النووي الحراري الدولي التجريبي (iter) ويقوم على أساس حصر البلازما في أنبوب حلقي تحت تأثير مجال مغناطيسي قوي.

2- قدر الاندماج بأشعة ليزر: ومنها التوكوماك الليزري الليبي الصغير في تاجوراء قرب طرابلس (حيث يؤدي قذف الذرات بأشعة الليزر القوية إلى تحويلها إلى بلازما).

3- الاندماج بالحزم الأيونية: الآتية من عدة مسرعات موجهة وتشبه في مبدأ عملها قدور الليزر وهي لا توجد إلا في سانديا بالولايات المتحدة والمعروفة باسم (p B F A Ii) .

4- الاندماج البارد: فيه مسام معدن البلاديوم شره الامتصاص للهيدروجين الذي أثار اهتمام العالم أخيرا.

5- الاندماج بالكبس عن طريق تيارات شديدة جدا من رتبة المليون أمبير الذي سيبدأ العمل به عام 1993 في الامبيريال كولدج في لندن.

محمد ابوزيد
01-14-2010, 02:51 AM
ما هى البلازما ؟

الـبـلازمــــــا


كلمة بلازما لدى معظم الناس تعنى فقط أنها الحالة الرابعة من المادة وهى توجد فقط فى التفاعلات النووية التى تحدث فى اعماق النجوم وعلى اسطحها أو تلك التى تحدث فى المفاعلات النووية حيث درجات الحرارة العالية والضغط المرتفع، ولكن هناك العديد من الصناعات التكنولوجية المعقدة جدا تعتمد اعتمادا كليا على استخدام البلازما المصنعة فى المختبر، من هذه الصناعات صناعة الدوائر الالكترونية المتكاملة وتصنيع الماس وعمل رقائق واسلاك من المواد فائقة التوصيل للكهرباء وكذلك فى تحويل الغازات السامة إلى غازات نافعة هذا فضلا عن دراسة وفهم اسرار الكون الفسيح. فى هذا المقال سوف نلقى الضوء على البلازما واستخداماتها.



معظم المواد فى الطبيعة توجد فى ثلاث حالات هى، الحالة الصلبة والحالة السائلة والحالة الغازية ويمكن تحويل المادة من حالة إلى اخرى اما بتغيير درجة الحرارة أو الضغط، وفى كل هذه الحالات تكون ذرات المادة محتفظة بالكتروناتها مرتبطة بها بقوى تجاذب كهربية. ولكن هناك حالة رابعة للمادة وهى تكون على صورة غاز ولكن هذا الغاز يحتوى على خليط من أعداد متساوية من الايونات موجبة الشحنة والكترونات سالبة. هذا الخليط يسمى بالغاز المتأين أو البلازما Plasma، وحيث أن البلازما حالة غير مستقرة فإن قوة التجاذب الكهربية تعمل على اعادة اتحاد الشحنات الموجبة والسالبة مع بعضها البعض، وتكون نتيجة اعادة الاتحاد هو انطلاق ضوء ذو تردد معين يعتمد على مستويات الطاقة للذرات المكونة لمادة البلازما.

محمد ابوزيد
01-14-2010, 02:52 AM
اين توجد البلازما ؟

أين توجد البلازما؟ غالبا معظم المواد الموجودة فى هذا الكون الفسيح توجد على شكل بلازما. هذه البلازما تكون عند درجات حرارة عالية وكثافة عالية ايضا، وتتغير هذه الظروف من مكان إلى آخر، فعلى سبيل المثال تبلغ درجة حرارة مركز الشمس عشرة ملايين درجة مئوية بينما على سطحها فإن درجة الحرارة تصل إلى ستة الاف درجة مئوية، ومن هنا فإن البلازما داخل الشمس تختلف تماما عن خارجها. ولكن على الكرة الأرضية حيث توجد المادة غالبا فى الحالة الصلبة، وطبقات الغلاف الجوى عبارة عن غاز غير متأين، أى أنه لا يوجد حالة بلازما طبيعية على سطح الأرض. ولكن هل يمكن عمل بلازما فى المختبر؟ إذا كنت تقرأ هذا المقال تحت ضوء مصباح فلورسنت (النيون) فإن مصدر هذا الضوء هو عبارة عن بلازما مصنعة، فعند مرور التيار الكهربى داخل غاز (غاز الزئبق) تحت ضغط منخفض فإنه يعمل على تأين الغاز مخلفا خليطا من الأيونات الموجبة والالكترونات، ما تلبث ان تتحد مع بعضها البعض وتكون النتيجة انبعاث الضوء الساطع، وتستمر هاتان العمليتان (التأين والاتحاد) طالما استمر التيار الكهربى فى السريان. هذا مثال على مصدر بلازما ذات درجة حرارة منخفضة موجود فى بيتك. لكن قديما وحتى يومنا هذا اهتم علماء الفيزياء الفلكية بكشف اسرار الكون وفهم ماذا يحدث على سطح الشمس والنجوم الاخرى. لذلك حاول العلماء تصنيع نفس البلازما الموجودة فى النجوم داخل المختبر، ولصنع هذه البلازما طور العلماء اجهزة مختلفة قادرة على توليد طاقة هائلة لانتاج بلازما بنفس ظروف البلازما الموجودة فى الطبيعة، كان احد هذه الاجهزة هو جهاز التحديد المغناطيسى Magnitec-confinment devices. وتمت معرفة معلومات كثيرة عن تركيب وفهم السطح الخارجى للغلاف الشمسى. ولكن ماذا عن البلازما الموجودة داخل الشمس ذات درجات الحرارة العالية جدا. كيف يمكن تصنيعها فى المختبر؟ فى الحقيقة وحتى عهد قريب وبتطور اجهرة الليزر اصبح بالامكان الحصول على بلازما مشابهة لتلك الموجودة على اى نجم سواء داخله أو خارجه.

محمد ابوزيد
01-14-2010, 02:53 AM
كيف يمكن الحصول على البلازما ؟


الحصول على بلازما بواسطة اشعة الليزر؟ نعلم أن الضوء هو عبارة عن تذبذب مجالين متعامدين احدهما كهربى والاخر مغناطيسى. والليزر ما هو الا عبارة عن ضوء له خصائص مميزة تجعل شدة اشعاعه (الطاقة لكل وحدة مساحات لكل وحدة زمن) تزداد بزيادة المجال الكهربى والمغناطيسى لموجاته. ولكن هل يمكن أن يكون الضوء الناتج من اشعة الليزر أقوى من الأجسام الصلبة؟ إن شدة المجال الكهربى لشعاع الليزر تبلغ 5x1011v/m عندما تكون شدة اشعاعه 3x1020W/m2، وفى أيامنا هذه تصل شدة اشعاع بعض انواع الليزر إلى مايقارب 1022W/m2. وبالمقارنة بشدة اشعاع مصباح كهربى عادى (60Watt) على بعد متر او مترين فهى لا تزيد عن 0.1W/m2. حيث أن المجال الكهربى لهذه الاشعة يفوق بكثير المجال الكهربى الذى يربط ذرات المواد الصلبة بعضها ببعض وبذلك فإن المجال الكهربى لشعاع الليزر سوف يؤثر على الكترونات المواد الصلبة ويفصلها عن الذرات تاركا أيونات موجبةـ وبهذا يحول الليزر جزء من المادة الصلبة إلى حالة بلازما. يتضح مما سبق أنه يمكن استخدام اشعة الليزر المركزة لانتاج بلازما عند درجات حرارة عالية جدا داخل المختبر وبتكلفة قليلة. يوضح شكل (1) كيفية تصنيع بلازما فى المختبر باستخدام الليزر. ولهذا النظام العديد من التطبيقات الهامة فى مجال الفيزياء الفلكية حيث يتم اختيار نوع مادة الهدف وتصميمه بشكل هندسى معين حتى تكون البلازما الناتجة فى المختبر مشابهة لظروف البلازما الحقيقية للنجم المراد دراسته. بالاضافة إلى إلى ذلك فإن البلازما تستخدم فى العديد من الصناعات.

محمد ابوزيد
01-14-2010, 02:53 AM
ما هى التطبيقات الصناعية للبلازما ؟


التطبيقات الصناعية للبلازما صناعة الدوائر الالكترونية المتكاملة تستخدم البلازما ذات درجات الحرارة المنخفضة فى العديد من المجالات الهامة على سبيل المثال، معظم الدوائر المتكاملة المعقدة جدا والتى تدخل فى تركيب كل جهاز الكترونى، هذه الدوائر الالكترونية تحتوى على عشرات الالاف من الترانزستورات والمكثفات موصلة ببعضها البعض بواسطة اسلاك قطرها فى حدود 0.1 ميكرومتر، هذا النوع من التكنولوجيا الدقيقة والمعقدة تصنع باستخدام البلارما، حيث تقوم البلازما بنحت الدوائر الالكترونية على شريحة السيليكون بناءا على القناع المعدنى الموضوع امام الشريحة. فى هذه العملية يكون النحت على شريحة السليكون كالاتى:- حيث أن الالكترونات داخل البلازما حرة الحركة وطاقتها اعلى من الايونات الموجبة فإنها تصل إلى اطراف البلازما بسرعة وتقوم بدورها بجذب الايونات الموجبة اتجاهها وتعجلها باتجاه الشريحة وعند اصطدام الايونات الموجبة بالمناطق المكشوفة على الشريحة تقوم بنحتها، وبعدها يستبدل القناع المعدنى باخر مطبوع عليه الدوائر الكهربية الخاصة بالطبقة الثانية وهكذا بالنسبة للطبقة الثالثة والرابعة ...... والخ حتى تتم عملية النحت. هنالك طريقة اخرى متبعة وهى تعتمد على استخدام مركب Carbon tetrafluoride CF4 كمصدر لانتاج البلازما، وعندها يتحول هذا المركب إلى اجزاء اخرى منها ذرات الفلورين. هذه الذرات تتفاعل مع ذرات السيليكون المكونة للشريحة وتكون مركب جديد هو Silicon tetrafluoride والذى يمكن ازالته اثناء عملية الضخ. يتضح مما سبق أن هذه الطريقة هى عملية كيميائية تقوم فيها ذرات الفلورين بالتهام السليكون المراد ازالته. وهذه العملية اسرع من عملية النحت المذكورة سابقا. وتجدر الاشارة إلى أن البحث والتطوير جارى منذ عام 1980 وحتى الأن للحصول على بلازما منتظمة لتغطى اكبر مساحة ممكنة حيث كانت شريحة السيليكون المستخدمة قديما تبلغ 2سم2 اما الأن فهى تصل إلى 20سم2، وهذه البلازما لها استخدامات عديدة فهى تستخدم فى شاشات اجهزة الكمبيوتر المتنقلة Notebook computer كمصدر ضوئى، والتى ادت إلى تطور كبير فى مجال تكنولوجيا شاشات العرض. ويسعى العلماء حاليا للحصول على شاشة مساحتها 1متر مربع وسمكها لايزيد عن 4-5 سم لاستخدامها كشاشة تلفزيون يمكن تعليقها فى المنازل والمحلات دون ان تشغل حيز من الغرفة، وهذا سوف يتحقق بالوصول إلى بلازما متجانسة على مساحة 1متر مربع.

محمد ابوزيد
01-14-2010, 02:54 AM
هل يمكن صناعة البلازما فى المختبر ؟



--------------------------------------------------------------------------------

كيف تصنع بلازما فى المختبر
لكى نصنع بلازما تحت ضغط منخفض لغاز ما، فإن كل ما يلزم هو مفرغة هواء بارتفاع متر وعرض نصف متر تقريبا، وكذلك مصدر تغذية للتيار المتردد، (فى الصناعة يكون مصدر التيار فى مجال ترددات الراديو 13.56MHz وحديثا يمكن استخدام اجهزة الميكرويف ذات ترددات اعلى 2.45GHz). فى الواقع يمكن عمل بلازما باى شكل ولكن الاكثر استخداما فى الصناعة هو الموضح فى شكل (2)، ويحتوى على قرصين معدنيين نصف قطرهما حوالى 15 سم والمسافة الفاصلة بينهما من 4-5سم. بعد ضخ الهواء بواسطة المفرغة يدخل الغاز المراد تحويلة إلى حالة بلازما وقد يكون خليط من الغازات، وبمجرد مرور التيار الكهربى (~200Watt) يبدأ الغاز فى التوهج مصدرا ضوءا ساطعا لونه يعتمد على نوع الغاز.

محمد ابوزيد
01-14-2010, 03:02 AM
حارف النيوترون :

يتكون حارف النيوترونات فقط من اليورانيوم 238. ولا يعتبر اليورانيوم 238 غير ثابل للإنشطار فقط ولكن أيضا له قدرات فريدة لكي يعكس النيوترونات ثانية لمصدرها. حارف النيوترونات اليورانيوم 238 يمكن أن يخدم غرضين. ففي قنبلة اليورانيوم، يقوم حارف اليورانيوم بالخدمة كحارس كي يحافظ على عدم نشوء أي حوادث عارضة وذلك بإرجاع النيوترونات الشاردة مما يمكن أن نسمية الرصاصة في نظير كتلة اليورانيوم، وبعيدا عن الكتلة الأكبر لليورانيوم، والعكس بالعكس. حارف النيوترون في قنبلة البلوتونيوم في الواقع تساعد قطع البلوتونيوم في المحافظة على نيوتروناتها بواسطة عكس الجزيئات ثانية لمركزها.

محمد ابوزيد
01-14-2010, 03:03 AM
اليورانيوم والبلوتونيوم

اليورانيوم 235 يعتبر استخلاصه صعب جدا. وفي الحقيقة، فإن من كل 25.000طن من خام اليورانيوم المأخوذة من المناجم في الطبيعة فإن 50 طنا فقط من معدن اليورانيوم يمكن تنقيتها منها. كما أن 99.3% من هذا المعدن هو يورانيوم 238 والذي يعتبر إلى حد كبير معدن ثابت من أجل استعماله كعامل في التفجير الذري. ولجعل الأمور أكثر تعقيدا، ل توجد هناك طريقة كيماوية عادية يمكنها فصل النظيرين حيث أن اليورانيوم 235 و238 يمتلكان خصائص كيماوية متماثلة تماما. الطرق الوحيدة التي يمكن أن تكون فعالة لفصل اليورانيوم 235 من اليورانيوم 238 هي طرق ميكانيكية.

اليورانيوم 235 هو قليلا وفقط قليلا أخف من اليورانيوم 238. يستعمل نظام الإنتشار الغازي gaseous diffusion ليبدأ عملية الفصل ما بين النظيرين. في هذا النظام، اليورانيوم يتحد مع الفلورين لتكوين غاز هيكسافلورايد اليورانيوم. هذا المزيج يدفع مروحيا بواسطة مضخة منخفضة الضغط خلال سلسلة من الحواجز ذات المسامات الضيقة للغاية. ولأن ذرات اليورانيوم 235 أخف وبالتالي تمر أسرع من ذرات اليورانيوم 238 وتستطيع أن تنفذ من الحواجز بسرعة أكبر. وكنتيجة لذلك فإن تركيز اليورانيوم 235 يصبح بالتالي أكبر كلما مر خلال كل حاجز. وبعد أن يمر خلال عدة آلاف من الحواجز فإن هيكسافلورايد اليورانيوم يحتوي نسبيا على تركيز أعلى من اليورانيوم 235 ... في وقود المفاعل اليكون 2% يورانيوم 235 نقي. وإذا ما دفع يمكن من ناحية نظرية أن نحصل على 95% يورانيوم 235 نقي وذلك للإستعمال في القنبلة الذرية.

وبمجرد إنتهاء عملية الإنتشار الغازي، فيجب أن تتم تنقية اليورانيوم مرة أخرى. الفصل المغناطيسي للمستخلص من عملية الإخصاب السابقة تستعمل بعدها وذلك من أجل المزيد من تنقية اليورانيوم. وهذا يتضمن غاز تيتراكلورايد اليورانيوم المشحون كهربيا وتوجيهه ليمر على مجال الكتروماغناطيسي ضعيف. وحيث أن جزيئات اليورانيوم 235 الأخف في مجرى الغاز تتأثر

بعد أول خطوتين، فإن عملية إخصاب ثالثة يتم تطبيقها على المستخلص من العملية الثانية. يتضمن اسلوب هذه العملية، احداث عملية طرد مركزية غازيةgas centrifuge من أجل مزيد من الفصل لليورانيوم 235 الأخف من نظيره الأثقل. القوة الطاردة المركزية تفصل النظيرين مستخدمة الفرق بين كتلة كل منها. وبمجرد أن تكتمل كل هذه الإجراءات، فإن كل ما يراد عمله هو تشكيل اليورانيوم 235 في قوالب مناسبة لوضعها داخل رأس حربي يمكنه تسهيل التفجير الذري.

حددت الكتلة الحرجة العظمى لليورانيوم 235 على أساس 50 كيلوجراما من اليورانيوم النقي. وحسب طريقة أو طرق التنقية المستخدمة عند تنقنية اليورانيوم 235، وكذلك مع تصميم ميكانيكية الرأس الحربي والإرتفاع الذي سينفجر عليه، فإن قوة التفجير في القنبلة الذرية يمكن أن يترواح من أي شيء بين 1 كيلو طن (وهي تساوي ألف طن من التي إن تي) إلى 20 ميجا طن (وهي تساوي 20 مليون طن من التي إن تي—والتي بالمناسبة تعتبر كأصغر رأس حربي نووي استراتيجي تمتلكه الدول العظمى اليوم. (ونذكر هنا بأن غواصة نووية واحدة تحمل قوة تفجير تعادل 25 مرة قوة الحرب العالمية الثانية)).
( هذي القوه ولا بلاش)
وبينما يعتبر اليورانيوم مادة مثالية الإنشطار، فإنها في الواقع ليست الوحيدة. البلوتونيوم يمكن أن يستعمل في القنبلة الذرية ايضا. وعند ترك اليورانيوم 238 داخل المفاعل الذري لمدة أطول من الزمن، فإن اليورانيوم 238 يلتقط جزيئات إضافية (خاصة التيوترونات) وتدريجيا يتحول إلى عتصر البلوتونيوم.

البلوتونيوم قابل للإنشطار ولكن لا ينشطر بسهولة اليورانيوم. وبينما اليورانيوم يمكن أن ينفجر بواسطة أداة بسيطة من النوع مزدوج الإطلاق part-2 gun-type device، فإن البلوتونيوم يجب أن يتم تفجيره بواسطة أكثر من 32 قسم معقد لغرف التحفيز مضاف إليها متفجر قوي من الأنواع المعروفة. وسرعة الضربة الكبيرة وميكانيكية الزناد المتزامنه لهذه المتفجرات. ويأتي مع هذه المتطلبات المهمة الإضافية لتقديم مزيج دقيق من البريليوم والبولونيوم لهذا المعدن أثناء حدوث كل هذه الأعمال.

وقدد حددت الكتلة العظمى الحرجة للبلوتونيوم على أساس 16 كيلوجرام. وهذه الكمية التي يحتاج إليها يمكن تخفيضها إلى 10 كيلوجرام وذلك بإحاطة البلوتونيوم بغلاف من اليورانيوم 238.

محمد ابوزيد
01-14-2010, 03:04 AM
فيما يلي توضيح الفرق الكبير بين مفجر اليورانيوم من النوع القاذف Uranium gun-type detonator ومفجر البلوتونيوم نوع Plutonium implosion detonator:



مفجر اليورانيوم: Uranium Detonator

يتكون من جزئين. كتلة كبيرة الحجم بيضاوية الشكل ومقعرة. والكتلة الصغيرة الحجم هي تماما ذات حجم وشكل الجزء المفقود في الكتلة الكبيرة. وحسب طريقة التفجير الخاصة بالمتفجرات العادية، فإن الكتلة الصغرى تحقن وتلتحم بقوة شديدة وعنف في الكتلة الكبرى. يحصل بالتالي الوصول إلى الكتلة الحرجة، يتبع ذلك التفاعل المتسلسل والذي يتم خلال جزء بسيط جدا من الثانية.

مفجر البلوتونيوم: Plutonium Detonator

يتكون من 32 قسم كل منها بشكل الفطيرة ذات ال45 درجة، متكونة من البلوتونيوم التي يحيط بها مزيج من البريليوم والبلونيوم. الأقسام ال32 تكون بمجموعها السكل المحدب. جميع هذه الأقسام يجب أن تحتوي على كميات متساوية بدقة من الكتلة (والشكل) مثل بعضها البعض. إن شكل المتفجر يشبه كرة القدم. وحسب المتفجرات التي هي من الأنواع التقليدية، فإن كل من ال32 قسما يجب أن تلتحم مع المزيج المذكور خلال جزء من عشرة ملايين من الثانية.

محمد ابوزيد
01-14-2010, 03:05 AM
الخصائص النوويه ليعض العناصر و التى تستخدم فى القذف النووي :

1- الذهب :
نواة الذهب تبعد عنها النيترونات بعيدا ..
بينما تستطير جسيمات ألفا عند أقترابها من ذرات الذهب ..

2- الكوبلت :
يمتص و يشع أشعة جاما ..

3- البريليوم :
عاكس لجسيمات ألفا ..
و البروتونات ..
و الألكترونات ..
و النيترونات ..

و مهدئ للتفاعلات النوويه ..

مصدر للنيترونات و أشعة أكس ..

4- الكادميوم و البورون و الأنديوم :
عناصر شرهه لأمتصاص النيترونات ..



- شمع البرافين ( الكان ) :

- غنى بالهيدروجين , الذى تسهل إثارة أنويته .. و أطلاقها ..
- عندما تصطدم النيترونات بالبرافين .. تنطلق البروتونات ( h+) .. مكتسبة طاقة النيترونات ..



- كبريتات النوشادر :
غنيه بالدوترونات (1h2 )
-
يستخدم الراديوم فى القذف النيترونى ..
حيث قيمة أشعاعه من النيترونات تعادل 1.000.000 ضعف لليورانيوم ..

لبللورة الزيركون أحزمة تحيطها تشبه تماما احزمة فان آلن التى تحيط بالأرض ..
و التى تحميها من قذف أنوية الأشعه الكونيه ...

و لقد أكتشف جبل ضخم بالبرازيل مللئ ببلورات ضخمه للزيركون ..
و بعض البللورات بلغ نصف قطرها 2سم و طولها 10 سم ..
و هو من أحجار ناريه ..
فثمنت الأحجار بكراره بإيطاليا ..
ثم أنتشرت تحت أسم لابلادورا ..

محمد ابوزيد
01-14-2010, 03:45 AM
اللقطات فى ملف pdf


http://www.herosh.com/download/2095287/_____.__.________._______.pdf.html

محمد ابوزيد
01-14-2010, 05:09 AM
اللقطات من موقعين:

موقع الفيزياء التعليمى وملتقى الفيزيائيين العرب