المساعد الشخصي الرقمي

مشاهدة النسخة كاملة : ملخص الديناميكا الحراريه



الاستاذ مناف دحروج
02-20-2009, 05:01 PM
مقدمة


الحمد لله رب العالمين والصلاة والسلام على رسوله الأمين وعلى آله وصحبه أجمعين أمــــا بعد :
يسرني أن أقدم هذا الجهد المتواضع والذي يحوي بعضاً من موضوعات الفيزياء الحرارية وذلك من أجل تنمية معلوماتنا حـــــــول هذا الموضوع وكسب معارف جديدة وتثبيت وترسيخ مصطلحات هذا الجانب من الحرارة سائلاً من الله العلي القدير الفائدة لنا ولزملائنا وبالله التوفيق ؛؛؛

الطالب /
مناف سعيد احمد دحروج
قسم الفيزياء ــ مستوى ثاني







كلمة شكر وعرفان
في البداية أتقدم بالشكر الجزيل إلى الأستاذ الدكتور عبدالحليم احمد التركي أستاذ المادة لما بذله من جهود في تدريس المادة وإيصال كل المعلومات المتعلقة بالمادة إلى أذهان طلاب المستوى , سائلين من المولى جل وعلا أن يجعل ذلك في ميزان حسناته وان يبقيه ذخراً لنا وان يمده بالعمر المديد,,, وصلى الله وسلم على نبيه الأمين وعلى آله وصحبه أجمعين .

الطالب / مناف سعي دحروج
قسم الفيزياء / مستوى ثاني



















النظرية الحركية للغازات






من خلال النظرية الحركية للغازات سوف نستنتج العلاقة بين الطاقة الحركية للجزيئات والطاقة الداخلية للنظام. وسوف تزودنا هذه النظرية بالمعنى الفيزيائي لدرجة الحرارة والضغط.
فرضيات النظرية الحركية للغازات
(1) عدد جزيئات الغاز كبير جدا والمسافة بينهم كبيرة، كما إن حجم جزيئات الغاز مهمل بالنسبة لحجم الوعاء الذي يحتويه.
(2) تخضع حركة الجزيئات لقوانين نيوتن للحركة، كما أن حركة الجزيئات حركة عشوائية.
(3) التصادمات بين الجزيئات تصادمات مرنة.
(4) القوة المتبادلة بين الجزيئات مهملة ماعدا القوة الناتجة من التصادمات بين الجزيئات.
(5) الغاز نقي.
(6) يكون الغاز في حالة اتزان حراري مع مع جدار الوعاء الذي يحتويه.
___________________________________ _____
يكون ضغط الغاز ناتجاً من التصادمات المرنة لجزيئات الغاز مع الجدار. ولهذا فإن الضغط الناتج عن عدد N من جزيئات الغاز تشغل حجم V من وعاء أبعاده d كما في الشكل المقابل.
إذا تحركت احد الجزيئات باتجاه جدار الوعاء بسرعة v وبعد التصادم معه فإنها ترتد في الاتجاه المعاكس ويكون في هذه الحالة مركبة السرعة في احد المحاور سالبة كما في الشكل، حيث أن الجزئ تحرك إلى اليمين ليصطدم بالجدار ويرتد عنه، وبتحليل متجه السرعة v إلى مركباته نجد أن المركبة على محور x تكون إلى اليسار أي في الاتجاه السالب.
سنقوم بحساب التغيير في كمية الحركة change in momentum للجزئ.
px = -mvx - mvx = -2mvx
وهذه هي قيمة كمية الحركة التي تعطي للجدار بعد كل تصادم.
لأي جزئ بعمل تصادمين متعاقبين مع نفس الجدار فإنه يجب أن يقطع مسافة وقدرها 2d في فترة زمنية t وتكون المسافة التي يقطعها الجزئ في تلك الفترة الزمنية هي vxt.
الزمن بين تصادمين متعاقبين هو
t = 2d/vx
إذا كانت F هي مقدار القوة المتوسطة التي تبذل بواسطة الجزئ على الجدار في فترة زمنية t وتسمى الصدمة Impulse والتي تعرف بالتغيير في كمية الحركة.
F t = px = -2mvx
F = 2mvx/t = 2mvx/2d/vx = mv2x/d
تكون القوة الكلية المؤثرة على الجدار هي مجموع القوى الناتجة من الجزيئات المتصادمة مع الجدار، وللحصول على قيمة الضغط الكلي الناتج فإن
P = F/A = m/dA (v2x1+v2x2+v2x3+....)
وتكون قيمة السرعة المتوسطة هي
وتكون قيمة السرعة المتوسطة هي

وحيث أن

v2 = vx2 + vy2 + vz2


ومن هذه المعادلة نستنتج أن الضغط يتناسب طردياً مع عد وحدة حجوم ويتناسب طردياً مع طاقة حركة الجزيئات .
التفسير الفيزيائي لدرجة الحرارة
بإعادة كتابة المعادلة السابقة كما في الشكل التالي:

P V = N k T

وهذا بعني أن درجة الحرارة هي مقياس لمتوسط طاقة حركة الجزيئات
وحيث أن


وتكون طاقة الحركة الكلية لعدد N من الجزيئات يساوي


ومن هذه المعادلة نستنتج أن الجزيئات الخفيفة تتحرك بسرعات أكبر من الجزيئات الثقيلة.
يوضح الجدول التالي بعض السرعات لعدد من الجزيئات عند درجة حرارة 20 درجة مئوية.

___________________________________ _____
Example
A tank of volume 0.3m3 contains 2 mole of helium gas at 20oC. Assuming the helium behaves like an ideal gas, (a) find the total internal energy of the system. (b) what is the average kinetic energy per molecule?
Solution
(a) Using equation for n=2mol, R=8.31J/mol.K and T=293K

E = 7.3103J
(b) Using equation for k=1.3810-23J/K and T=293K

= 6.0710-21J
المحاضرة (2)
الغاز المثالي Ideal Gas

الغاز المثالي هو الغاز (بغض النظر عن نوعه) والذي تنطبق عليه الشروط التالية:
(1) حجم جزيئات الغاز مهملة بالنسبة للوعاء الذي يحتويه أي تحت ضغط منخفض.
(2) التصادمات بين جزيئات الغاز تصادمات مرنة.
(3) حركة جزيئات الغاز حركة عشوائية دون مؤثرات خارجية.
لهذا فإن الغازات الموجودة عند درجة حرارة الغرفة وتحت ضغط يساوي الضغط الجوي تعتبر غازات تتصرف كغاز مثالي.
لا شك أن الغز المثالي لا وجود له في الطبيعة ولكن في علم الفيزياء يتم وضع مثل هذه الفروض لتسهيل دراسة تأثير المتغيرات الفيزيائية في حالة ظروف مثالية لتسهيل المعادلات الرياضية والوصول إلى علاقات رياضية تحكم تصرف الغاز المثالي ثم يتم مقارنتها مع الغاز الحقيقي. والمتغيرات الفيزيائية هنا هي درجة الحرارة والحجم والضغط، ولدراسة العلاقة بين هذه المتغيرات على الغاز المثالي سنقوم بتثبيت متغير واحد ودراسة العلاقة بين المتغيرين الآخرين، وهذا ما قام به العالمان بويل Boyle وتشارل Charle.
Boyle’s Law
When gas is kept at constant temperature its pressure is inversaly proportional to the volume.
Charle’s Law
When the pressure of the gas kept constant the volume directly proportional to the temperature.
V  T at constant pressure
These result can be summarized in one equation called the equation of state for an ideal gas
PV = nRT
Where n is the number of moles, R is a constant for a specific gas, which can be determined experimentally, and T is the absolute temperature in Kelvin
When the pressure goes to zero then the quantity PV/nT become the same value of R for all gasses, therefore R called the universal gas constant (الثابت العام للغازات)
R = 8.31 J/mole.K
The ideal gas law can be expressed in terms of the total number of molecules N where N = nNA
where NA is the Avogadro’s number = 6.02210-23molecules/mole

PV = NKT
where K is called Boltzmann’s constant, which has the value R/NA
K = R/NA = 1.3810-23J/K
One mole of substance is that mass of the substance that contains Avogadro’s number of molecules
Example (1)
An ideal gas occupies a volume of 100cm3 at 20oC and a pressure of 100Pa. Determine the number of moles of gas in the container.
Solution
PV = nRT
What is the number of molecules in the container?
Example (2)
Pure helium gas is admitted into a tank containing a movable piston. The initial volume, pressure and temperature of the gas are 1510-3m3, 200kPa and 300K respectively. If the volume is decreased to 1210-3m3 and the pressure is increased to 350KPa, find the final temperature of the gas.
Solution
Since the gas can not escape from the tank then the number of moles is constant, therefore, PV = nRT at the initial and final points of the process



Exercise
An ideal gas undergoes the process shown in the figure. Find V2, Ta, Td and Tb. where n=44kmole and R=8.314J/mole.K


مصطلحات وتعريفات أساسية

علم الديناميكا الحرارية هو علم تجريبي يهتم بدراسة كل ما هو متعلق بدرجة الحرارة والطاقة الحرارية. يستخدم علم الديناميكا الحرارية في التطبيقات الهندسية في تصميم المحركات ومولدات الطاقة الكهربية وأجهزة التبريد والتكييف ويدخل هذا العلم في التطبيقات الصناعية المختلفة.
مصطلحات هامة في علم الديناميكا الحرارية
كل علم من العلوم وكل تخصص من التخصصات له مفاهيمه الأساسية وهذه المفاهيم هي اللغة التي سنستخدمها لشرح مواضيع هذا العلم ومن هذه المصطلحات ما يلي:

النظام هو الجزء المحدد من المادة والتي توجه إليه الدراسة
System
المحيط هو الجزء الذي يحيط بالـ system ويتبادل معه الطاقة ويمكن أن يكون حقيقي أو وهمي Surrounding
الكون هو كلا من الـ system و الـ surrounding Universe



العملية هي أي تغير يحدث على النظام ويحدث تغيير في الضغط أو درجة الحرارة أو الحجم (الإحداثيات الثيرموديناميكية) Process
هي العملية التي يكون فيها التغيير تحت درجة حرارة ثابتة Isothermal process
هي العملية التي يكون فيها التغيير تحت ضغط ثابت Isobaric process
هي العملية التي يكون فيها التغيير تحت حجم ثابت Isochoric process
هي العملية التي لا يكون فيها تغيير في كمية الحرارة وتتم في نظام معزول أي لا يوجد انتقال حرارة من أو إلى النظام. Adiabatic process
هي العملية التي تكون فيها الإحداثيات الثيرموديناميكية غير متجانسة عند إجراء العملية Irreversible process
هي العملية التي تكون فيها الإحداثيات الثيرموديناميكية متجانسة عند إجراء العملية Reversible process
الاتصال الحراري يكون بين جسمين إذا كان من الممكن أن يتبادلا الطاقة الحرارية بدون بذل شغل Thermal Contact
الاتزان الحراري بين جسمين يحدث إذا كان بينهما اتصال حراري وكذلك يكون صافي التبادل الحراري بينهما يساوي صفر Thermal Equilibrium
القانون الصفري للديناميكا الحرارية The zeroth law of thermodynamics
Experimentally it was found that when two body A and B are each in thermal equilibrium with a third body C then A and B are also in thermal equilibrium.

ومعنى ذلك أنه إذا وجد جسمين معزولين وكلاً منهما في حالة اتزان حراري مع جسم ثالث فإن ذلك يؤدي إلى أن الجسمين أيضا في حالة اتزان حراري مع بعضهما البعض. وسمي بالقانون الصفري للديناميكا الحرارية لأنه من المسلمات البديهية ويعتبر هذا القانون الأساس لفكرة الثيرمومتر المستخدم لقياس درجات الحرارة.
الثيرمومتر ومقياس درجات الحرارة Thermometer and temperature scale
الثيرموميتر هو أداة تستخدم لقياس درجات الحرارة، والثيرمومتر يعمل من خلال تغير احد الخصائص الفيزيائية بتغير درجة الحرارة مثل خاصية تمدد الاجسام مع زيادة درجة الحرارة وتغير الضغط أو مقاومة السلك الكهربي بتغير درجات الحرارة. وفيما يلي نذكر الأنواع المختلفة للثرمومتر

Type of thermometer Material Physical property
(1) Liquid thermometer Mercury or Alcohol Change in length
(2) Gas Thermometer Hydrogen Change in pressure
(3) Resistance thermometer Platinum Change in resistance
(4) Thermocouple thermometer Chromel and Alumel Change in electric potintial
(5) Radiation Thermometer Pyrometer Change in radiation colour
(6) Magnetic thermometer Change in susceptibility
من الجدول السابق نجد أنه يمكن تصميم عدة أنواع من مقاييس درجات الحرارة بالاعتماد على تغير الخصائص الفيزيائية بتغير درجة الحرارة. ولعمل ذلك يمكن أن يكون هناك تدريج محدد لقياس درجة الحرارة حيث أن كل خاصية فيزيائية مما سبق تتغير بعلاقة محددة مع تغير درجة الحرارة وبالتالي يكون في النوع الأول من مقياس درجة الحرارة حيث تتمدد مادة الزئبق بزيادة درجة الحرارة أو ازدياد الضغط أو المقاومة بزيادة درجة الحرارة كما في النوعين الثاني والثالث في الجدول أعلاه، ولهذا لابد من إيجاد مقياس أو تدريج يعبر عن درجة الحرارة بغض النظر عن تغير الخاصية الفيزيائية ممن هذه التدريجات المقياس المئوي أو مقياس الفهرنهايت أو المقياس المطلق.
المقياس المئوي Celsius scale
يعتمد هذا التدريج لقياس درجة الحرارة على نقطة تحول الماء من الحالة الصلبة إلى الحالة الغازية وهي درجة الانصهار وهي درجة الصفر, ونقطة التحول من الحالة السائلة إلى الحالة الغازية وهي درجة الغليان للماء وهي درجة 100.

المقياس الفهرنهايتي Fahrenheit scale
يعتمد هذا التدريج لقياس درجة الحرارة على نقطة تحول الماء أيضا ولكن تم اعتبار درجة الانصهار هي درجة 32 بدلاً من الصفر، ودرجة الغليان للماء وهي درجة 212 بدلاً من 100.
ولتوضيح العلاقة بين التدريج المئوي والتدريج الفهرنهايتي استعن بالشكل التالي:


المقياس المطلق Kelvin scale
مما سبق نجد أن كلا التدريجين اعتمدا على نوع مادة السائل وهو الماء حيث تم اعتبار نقطة الانصهار ونقطة الغليان كأساس للتدريج، وحيث أن هاتين النقطتين تعتمدان على الضغط وعدد من العوامل الأخرى لذا فإننا بحاجة إلى تدريج مطلق لا يعتمد على طبيعة المادة وهذا ما قام به العالم كلفن في تحديد تدريج مطلق لدرجة الحرارة.
قام العالم كلفن باستخدام الصيرمومتر المعتمد على التغير في الضغط Gas thermometer ودرس العلاقة بين الضغط ودرجة الحرارة، وذلك لأكثر من غاز ووجد أن جميع الغازات يقل ضغطها بنقصان درجة الحرارة وأن الضغط يصبح صفر نظرياً (أي عند مد المنحنيات كما في الشكل على استقامتها) عند درجة حرارة وقدرها -273. وقد تم اعتبار هذه الدرجة هي الصفر المطلق وأنها لا تتغير بتغير نوع الغاز وعليه تم معايرة باقي التدريجات الأخرى بالنسبة للصفر المطلق.

وعليه فإن العلاقة بين التدريج المئوي والتدريج المطلق هي:
Tc = T-273
تمرين: ما هي درجة الحرارة التي عندها يتساوى التدريج المئوي والتدريج الفهرنهايتي.

المحاضرة (3)
Heat and the first law of thermodynamics
من المعلوم أنه عند وضع جسمين عند درجات حرارة مختلفة بينهما اتصال حراري فإن الحرارة تنتقل من الجسم الأعلى درجة حرارة إلى الجسم الأقل درجة حرارة، ويسمى هذا تدفق حراري heat flow ويستمر حتى يصل الجسمين إلى نفس درجة الحرارة وعندها يكونا في حالة اتزان حراري Thermal Equilibrium.
حاول العلماء تفسير ظاهرة التدفق الحراري بافتراض جسيمات غير مرئية تدعى الكلوريك Caloric، تعمل على نقل الحرارة بين الأجسام. ولكن كان هذا الافتراض غير صحيح حيث لا يمكن تفسير العديد من الظواهر الحرارية مثل عدم تغير درجة الحرارة عند حالة التحول من الحالة السائلة إلى الحالة الغازية مثل غليان الماء، ولكن العالم جول Joule اثبت بالتجربة العملية أن التدفق الحراري ما هو إلا انتقال للطاقة وأن الحرارة صورة من صور الطاقة.
The word of ’’ heat flow’’ is an energy transfer that take place as a consequence of temperature difference only.
أي أن التدفق الحراري هو انتقال الطاقة الناتج عن اختلاف درجات الحرارة.
ودرجة الحرارة ما هي إلا مقياس للطاقة الداخلية للمادة وكلما زادت درجة الحرارة زادت الطاقة الداخلية أي زادت الطاقة الحركية لجزيئاته.
The unit of heat is ’’calorie’’ which is defined as the amount of heat (energy) required to raise the temperature of 1g of water from 14.5oC to 15oC.
وبعد أن اثبت العالم جول أن الحرارة هي طاقة فيمكن التعبير عن وحدة الحرارة بالجول وقد اثبت عملياً أن:
1cal = 4.186J or 1J = 0.2389cal
The mechanical equivalent of heat
قام العالم جول بتصميم التجربة الموضحة في الشكل التالي والتي اثبت فيها أن الطاقة الميكانيكية تتحول إلى حرارة وان الحرارة ما هي إلا صورة من صور الطاقة ويمكن تحويلها من صورة إلى أخرى.
تعتمد التجربة على قياس التغير في طاقة الوضع للأثقال التي تحرك المروحة داخل ال&#
العزل الحراري للمباني
طور الإنسان معالجاته للظروف البيئية المحيطة به من خلال التجارب الطويلة والمستمرة في ممارسة البناء فاستطاع أن يتعرف على خصائص مواد البناء فصار يستخدمها بأقصى فعالية لتلبية احتياجاته ومتطلباته .. فمن بين العيوب الرئيسية في المباني الخرسانية رداءة سلوكها وتصرفها الحراري بالنظر الى طبيعة المناخ وشدة حرارته . وافضل دليل على ذلك هو منحنى استهلاك الطاقة الكهربائية في مدينة الرياض فالملاحظ ارتفاع استهلاك الكهرباء في فصل الصيف بمقدار الضعف عن فصل الشتاء . والسبب في هذا التزايد الكبير يرجع بصورة أساسية إلى الطاقة الكهربائية المستعملة لتشغيل وسائل التكييف المتنوعة والتي يضطر إليها الناس لطرد الحرارة الشديدة والنافذة الى مساكنهم نتيجة رداءة ومقاومة الحوائط والأسقف لاختراق الحرارة من الخارج .
كما أن نصف مرافق ومحطات الكهرباء مسخر بصورة أساسية لتشغيل أجهزة وسائل التكييف في فصل الصيف فقط مما يجعل معامل الانتفاع من هذه المرافق والمحطات منخفض جدا ويؤدي بالتالي الى ارتفاع تكلفة توليد وتشغيل وصيانة محطات وشبكات الكهرباء .
واما ما يمكن التحكم به على المستوى الفردي فاختيار الألوان الخارجية وتوجيه المبنى وتوزيع الفتحات ومساحاتها ومعالجتها وعزل الحوائط والأسقف المعرضة للأجواء والظروف المناخية الخارجية ،
العزل الحراري
من المعلوم أن العزل الحراري هو عملية منع انتقال الحرارة من مكان الى آخر كليا أو جزئيا وذلك بالاستفادة من خصائص بعض المواد كرداءة التوصيل الحراري وكزيادة السعة الحرارية وخاصية الانعكاس .
مواد العزل
وهي تلك المواد أو تشكيلة المواد التي إذا استخدمت بطريقة مناسبة يمكن أن تمنع أو تقلل انتقال الحرارة بوسائل الانتقال الحراري المختلفة ( التوصيل – الحمل – الإشعاع ).
ويمكن تقسيم المواد العازلة بصورة أساسية كما يلي :
• مواد عازلة غير عضوية تتركب من ألياف أو خلايا كالزجاج والاسبستوس والصوف الصخري وسيلكات الكاليسوم والبيرلايت والفيرميكيولايت .
• مواد عازلة عضوية ليفية مثل القطن وأصواف الحيوانات والقصب أو خلوية مثل الفلين والمطاط الرغوي أو البولي ستايرين أو البولي يورثين .
• مواد عازلة معدنية كرقائق الألمنيوم والقصدير العاكسة.
وأما الأشكال التي توجد عليها المواد العازلة فهي كما يلي :
1. مواد عازلة سائبة وتكون عادة في صورة حبيبات أو مسحوق تصب عادة بين الحوائط أو في أي فراغ مغلق كما يمكن أن تخلط مع بعض المواد الأخرى وهي تستخدم بصورة خاصة في ملء الفراغات غير المنتظمة .
2. مواد عازلة مرنة الشكل وهي تختلف في درجة مرونتها وقابليتها للثني أو الضغط وتوجد عادة على شكل قطع أو لفات وتثبت عادة بمسامير ونحوه كالصوف الزجاجي والصخري ورقائق الألمنيوم ونحوها .
3. مواد صلبة : وتوجد على شكل ألواح بأبعاد وسماكات محدودة بالبولي يورثين والبولي ستايرين .
4. مواد عازلة سائلة تصب أو ترش في أو على المكان المطلوب لتكوين طبقة عازلة وهذه مثل البولي يورثين الرغوي .
خصائص مواد العزل الحراري
بالنظر الى متطلبات التصميم فإن اختيار مادة عازلة معينة يستلزم بالاضافة الى معرفة الخاصية الحرارية ، معرفة الخصائص الثانوية الأخرى للمادة كامتصاص الماء والاحتراق والصلابة ..الخ.
I. الخصائص الحرارية:
والمقصود منها قدرة المادة على العزل الحراري وعادة ما تقاس بمعامل التوصيل الحراري فكلما قل معامل التوصيل دل ذلك على زيادة مقاومة المادة للانتقال الحراري . فالمقاومة الحرارية تتناسب تناسبا عكسيا مع معامل التوصيل الحراري خلال المادة العازلة يتم عادة بواسطة جميع وسائل الانتقال المختلفة ( التوصيل والحمل والاشعاع ).
أما المواد العاكسة فهي لقدرتها العالية على رد الاشعاعات والموجات الحرارية تعتبر مواد فعالة في العزل الحراري بشرط أن تقابل فراغا هوائيا وتزيد قدرة هذه المواد على العزل بزيادة لمعانها وصقالتها .
وغالبا ما تكون المادة العازلة متكاملة مع الجدران والأسقف ولذا فلمعرفة المقاومة الكلية للانتقال الحراري لابد من جمع المقاومات المختلفة لطبقات الحائط أو السقف بما فيها مقاومة الطبقة الهوائية الملاصقة للأسطح الداخلية أو الخارجية .
وجمع هذه المقاومات يشابه تماما جمع المقاومات الكهربائية ، فهي إما أن تكون على التوازي أو التسلسل ويعتمد هذا على تركيبة المواد في الحائط أو في السقف. وإضافة الى ما ذكر من خصائص حرارية فإن هناك خصائص أخرى كالحرارة النوعية والسعة الحرارية ومعامل التمدد والانتشار والتي لابد من معرفتها لكل مادة عازلة .
II. الخصائص الميكانيكية
بعض المواد العازلة تتميز بمتانة وقدرة على التحميل . ولهذا فيمكن أحيانا استخدامها للمساهمة في دعم وتحميل المبنى وذلك إضافة الى هدفها الأساسي وهو العزل الحراري . ولهذا ينظر الى قوة تحمل الضغط والشد والقص ..الخ.

III. الامتصاص
وجود الماء بصورة رطبة أو سائلة أو صلبة في المادة العازلة يقلل من قيمة العزل الحراري للمادة أو يقلل المقاومة الحرارية ، كما أنه قد يساهم في إتلاف المادة بصورة سريعة .
وتأثير الرطوبة على المادة يعتمد على خصائص المادة من حيث قدرتها على الامتصاص والنفاذ ، كما يعتمد على الأجواء المناخية المحيطة بها كدرجة الحرارة ونسبة الرطوبة ..الخ. اما الخصائص التي يقاس بها مدى تأثير المادة بالرطوبة فهي الامتصاص والنفاذية .
III. الأمان والصحة
لبعض المواد العازلة خصائص معينة منها ماقد يعرض الإنسان للخطر سواء وقت التخزين أو أثناء النقل أو التركيب أو خلال فترة الاستعمال فقد تتسبب في إحداث عاهات في جسم الإنسان ، دائمة أو مؤقتة ، كالجروح والبثور والتسمم والالتهابات الرئوية أو الحساسية في الجلد والعينين مما يستوجب أهمية معرفة التركيب الكيميائي للمادة العازلة . كذلك صفاتها الفيزيائية الأخرى من حيث قابليتها للاحتراق والتسامي .
IV. الصوت
بعض المواد العازلة للحرارة قد تستخدم لتحقيق بعض المتطلبات الصوتية كامتصاص الصوت وتشتيته وامتصاص الاهتزازات لذا فإن معرفة الخصائص المرتبطة بهذا الجانب قد يفي بتحقيق هدفين بوسيلة واحدة .
إضافة الى ما سبق من خصائص فإن هناك خصائص قد تكون ضرورية عند اختيار المادة العازلة المناسبة كمعرفة الكثافة والقدرة على مقاومة الانكماش وامكانية الاستعمال وانتظام الأبعاد ومقاومة التفاعلات الكيميائية والمقاسات والسماكات المتوفرة..الخ . إضافة لكل ما سبق يلعب العامل الاقتصادي أخيرا دورا هاما في اتخاذ القرار ، في سعر المادة العازلة له اثر كبير عند الاختيار .

ما هو القدر المناسب من المادة العازلة
يتم عادة اختيار نوعية المادة العازلة بالموازنة بين تكلفتها الاقتصادية ومدى تحقيقها للمتطلبات الرئيسية والثانوية ولكن هذا الاختيار لا يغني عن السعي الى تحديد السماكة المناسبة من المادة المختارة . يمكن تقسيم المباني من حيث نوعية وطريقة الاكتساب الحراري الرئيسي الى نوعين :
1. مباني معظم اكتسابها للحرارة يأتي من خلال القشرة أو الغلاف الخارجي للمبنى بمعنى أن متطلبات التبريد والتدفئة تتناسب بصورة تقريبية مع الفرق بين درجة الحرارة الداخلية والخارجية . وتقع المساكن والمخازن عادة في هذا القسم نظرا لأن الحرارة المكتسبة من الخارج تفوق بكثير الحرارة الناتجة عن النشاطات المختلفة داخلها .ففي هذه المباني فإن زيادة العزل الحراري في الغلاف الخارجي للمبنى سيؤدي بالضرورة الى تقليل مقدار الحرارة المكتسبة أو المفقودة وهذا بالتالي يؤدي الى تقليل الطاقة اللازمة لإزالة ما يكتسب أو تعويض ما يفقد . ولتحديد السمك الأمثل للمادة العازلة في المباني من هذا النوع فإن الضابط الأساسي لهذا التحديد هو مقدار التكلفة الكلية وهي تساوي مجموع تكلفة المادة العازلة وتكلفة الطاقة اللازمة لتكييف المبنى .

2. مباني اكتسابها الرئيسي للحرارة يأتي من داخلها وهذه المباني يكون الاكتساب الرئيسي للحرارة فيها نتيجة للنشاطات المقامة داخلها كالمصانع أو نتيجة لضخامة عدد المستخدمين أو للحرارة الناتجة عن الاضاءة الصناعية كالمكاتب ونحوها . ففي مثل هذه المباني ولأن معظم الاكتساب لا يتأثر بشكل أساسي بالظروف الجوية الخارجية فإن زيادة سمك الطبقة العازلة لا يؤدي بالضرورة إلى تقليل تكلفة الطاقة بل قد يؤدي إلى زيادتها فضلا عن زيادة التكلفة الكلية . فزيادة سمك الطبقة العازلة يؤدي إلى احتباس الحرارة المكتسبة في الداخل من تراكمها فتزيد أحمال التبريد بصورة واضحة . لذا فالمباني من هذا النوع تحتاج إلى دراسة مستفيضة بواسطة الحاسب الآلي لتحديد سلوك المبنى الحراري على مدار العام باستخدام سماكات مختلفة من المادة العازلة ومن ثم الوصول الى السمك الأمثل .
©موقع مركز المدينة للعلم والهندسة - اتصل بنا لأي مشكلة أو اقتراح


العزل الحرارى فى المبانى
مقدمة
انطلاقاً من التوجيهات السامية الكريمة الرامية إلى تطوير مسيرة التنمية الشاملة ، فإن هذه الوزارة تولي الاهتمام الكبير في تحسين مستوى الخدمات البلدية من خلال تطوير أساليب العمل الفنية ، وإصدار الأنظمة والتعليمات ، ووضع الحلول المناسبة لرفع المستوى الفني والبيئي لتلك الخدمات .
ويأتي من ضمن هذه الإصدارات دليل العزل الحراري في المباني . وأن الوزارة عندما قامت بإعداد هذا الدليل ليحدوها الأمل في تحقيق الغرض الذي أعد من أجله ، لتكون المحصلة النهائية مشاريع ذات طابع مميز تتوفر فيها جميع المتطلبات الفنية والبيئية . وتأمل الوزارة أن تتلقى أية مرئيات أو اقتراحات يمكن الأخذ بها عند تحديث هذه الاشتراطات مستقبلاً .
والله ولي التوفيق
وزير الشئون البلدية والقروية
د./ محمد بن إبراهيم الجار الله
تمهيـــــد
شهد قطاع البناء تطوراً هائلاً في مجال مواد البناء ومنها الخرسانة المسلحة التي تتميز بسهولة العمل بها وقدرة تحملها العالية .
ولكن صاحب تلك المواد بعض السلبيات المرتبطة بخصائصها ، فالخرسانة المسلحة لها خاصية التوصيل السريع للحرارة وكذلك سرعة الفقدان لها ، مما يجعل استخدامها في بناء المباني بدون عوازل حرارية أو أجهزة تكييف غير مريح للإنسان ، على العكس في حالة استخدام مواد البناء التقليدية (الطين والحجر) التي لها خاصية عالية في تخزين الطاقة الحرارية من البيئة المحيطة وتباطؤ كبير في معدل توصيلها 000 وذلك مقارنة بالتقنيات المعاصرة وغير المعزولة حرارياً .
ونظراً لما يسود المملكة من مناخ قاري في معظم مدن المملكة حيث تتفاوت فيه درجات الحرارة بشكل كبير ، مما يؤثر على عناصر المبنى وعلى درجات الحرارة داخل وخارج المبنى ، مما يؤدي إلى الاستعانة بالأجهزة الميكانيكية لتهيئ درجة الحرارة المناسبة داخل المباني ، لذا فإن عدم عزل المباني جيداً يؤدي إلى ارتفاع في معدل تشغيل الأجهزة الميكانيكية مما يؤدي إلى زيادة الأعباء المادية على المواطن . وعليه برزت أهمية إعداد دراسة عن العزل الحراري للمباني لما في ذلك من آثار إيجابية على تقليل عدد ساعات تشغيل أجهزة التكييف ، وبالتالي تقليل الاستهلاك في الطاقة الكهربائية .
وتشمل هذه الدراسة تعريف العزل الحراري والهدف من استخدامه في المباني ، وبيان مزاياه ، والخواص المختلفة له ، والعوامل التي تؤثر على اختيار مواده المناسبة ، وبيان أنواعها وطرق تصنيعها ، وأهم الاعتبارات الواجب اتباعها عند استخدام العزل الحراري مع ايضاح التعليمات البلدية بهذا الخصوص .
والله من وراء القصد
وكيل الوزارة للشئون الفنية
عبد الرحمن بن محمد الدهمش
الهـدف من الدراسـة :
التعريف بأهمية استخدام العوازل الحرارية في المباني بيئياً وصحياً واقتصادياً .
1 - تعريف العزل الحراري :
العزل الحراري : هو استخدام مواد لها خواص عازلة للحرارة بحيث تساعد في الحد من تسرب وانتقال الحرارة من خارج المبنى إلى داخله صيفاً ، ومن داخله إلى خارجه شتاءً .
ويمكن تقسيم الحرارة التي تخترق المبنى والتي من المفروض ازاحتها باستعمال أجهزة التكييف للحفاظ على درجة الحرارة الملائمة إلى ثلاثة أنواع هي :
- الحرارة التي تخترق الجدران والأسقف .
- الحرارة التي تخترق النوافذ .
- الحرارة التي تنتقل عبر فتحات التهوية الطبيعية .
وتقدر الحرارة التي تخترق الجدران والأسقف في أيام الصيف بنسبة 60 –70% من الحرارة المراد إزاحتها بأجهزة التكييف . وأما البقية فتأتي من النوافذ وفتحات التهوية .
وتقدر نسبة الطاقة الكهربائية المستهلكة في الصيف لتبريد المبنى بنسبة حوالي 66% من كامل الطاقة الكهربائية . ومن هنا تنبع أهمية العزل الحراري لتخفيض استهلاك الطاقة الكهربائية المستخدمة في أغراض التكييف ، وذلك للحد من تسرب الحرارة خلال الجدران والأسقف لتحقيق المسكن الوظيفي الملائم وتقليل التكلفة .
2 – مزايا استخدام العزل الحراري :
2-1- الترشيد في استهلاك الطاقة الكهربائية ، حيث أثبتت التجارب العلمية أن تطبيق استخدام العزل الحراري في المباني السكنية والمنشآت الحكومية والتجارية والصناعية يقلل من الطاقة الكهربائية بمعدلات تصل إلى نسبة 40% .
2-2-احتفاظ المبنى بدرجة الحرارة المناسبة لمدة طويلة دون الحاجة إلى تشغيل أجهزة التكييف لفترات زمنية طويلة .
2-3- يؤدي إلى استخدام أجهزة تكييف ذات قدرات صغيرة ، وبالتالي تقل تكاليف استهلاك الطاقة والأجهزة المستخدمة .
2-4- رفع مستوى الراحة لمستخدمي المبنى .
2-5- يقلل من استخدام أجهزة التكييف مما يقلل من التأثير الصحي والنفسي على الإنسان بسبب الضوضاء الناتجة عن التشغيل لتلك الأجهزة .
2-6- يعمل العزل الحراري على حماية وسلامة المبنى من تغيرات الطقس والتقلبات الجوية حيث إن فرق درجات الحرارة الناتجة عن ارتفاع الحرارة بسبب أشعة الشمس نهاراً ، وانخفاض درجة الحرارة ليلاً ، وتكرار حدوث ذلك يؤدي إلى إحداث اجهادات حرارية تجعل طبقة السطح الخارجي لأجزاء المبنى تفقد خواصها الطبيعية والميكانيكية ، ويحدث تشققات بها ، وتسبب تصدعات وشروخ في هيكل المبنى .
2-7- يؤدي إلى تقليل سماكات الحوائط والأسقف اللازمة لتخفيض انتقال الحرارة لداخل المبنى .
2-8- توفير العبء على محطات انتاج الطاقة وشبكات التوزيع .
3 - خصائص مواد العزل الحراري :
إن اختيار مادة عازلة معنية يستلزم معرفة خصائصها الحرارية وخصائصها الأخرى كامتصاص الماء وقابليتها للاحتراق وصلابتها 0000 الخ .
3-1- الخصائص الحرارية :
هي قدرة المادة على العزل الحراري ، ويتم قياس هذه القدرة عادة بمعامل التوصيل الحراري ، فكلما قل معامل دل ذلك على زيادة مقاومة المادة لنقل الحرارة والعكس صحيح ، ومن ذلك يتضح أن المقاومة الحرارية تتناسب عكسياً مع معامل التوصيل الحراري . ويتم انتقال الحرارة خلال المادة العازلة عادة بواسطة جميع وسائل الانتقال المعروفة وهي (التوصيل – الحمل – الإشعاع) ويلاحظ أن المواد العاكسة تعتبر مواداً فعالة في العزل الحراري لقدرتها العالية على رد الإشعاعات والموجات الحرارية بشرط أن تقابل فراغاً هوائياً . وتزداد قدرة هذه المواد على العزل بزيادة لمعانها وصقلها ، وغالباً ما تكون المادة العازلة متكاملة مع الجدران والأسقف ، ولمعرفة المقاومة الكلية للانتقال الحراري لا بد من جمع المقاومات المختلفة لطبقات الحائط أو السقف بما فيها مقاومة الطبقة الهوائية الملاصقة للأسطح الداخلية أو الخارجية . وجمع هذه المقاومات يشبه تماماً جمع المقاومات الكهربائية ، فهي إما أن تكون على التوازي أو التوالي ، ويعتمد هذا على موضع المواد في الحائط أو السقف . وإضافة لما ذكر من خواص حرارية فإن هناك خواص أخرى كالحرارة النوعية والسعة الحرارية ومعامل التمدد والانتشار والتي يلزم معرفتها لكل مادة عازلة .
3-2- الخصائص الميكانيكية .
بعض المواد العازلة تتميز بمتانة وقدرة عالية على التحمل ، ولهذا فيمكن أحياناً استخدامها للمساهمة في دعم وتحميل المبنى ، وذلك إضافة لهدفها الأساسي وهو العزل الحراري . لذا يؤخذ في الاعتبار قوة تحمل الضغط والشد والقص .
3-3- خصائص الامتصاص :
إن وجود الماء بصورة رطبة أو سائلة أو صلبة في المادة العازلة يقلل من قيمة العزل الحراري للمادة ، أي يقلل المقاومة الحرارية كما أنه قد يساهم في إتلاف المادة بصورة سريعة . وتأثير الرطوبة على المادة يعتمد على خواص تلك المادة من حيث قدرتها على الامتصاص والنفاذية ، كما يعتمد على الأجواء المناخية المحيطة بها كدرجة الحرارة ونسبة الرطوبة .
3-4- الخصائص الأمنية والصحية :
يكون لبعض المواد العازلة خواص معينة منها ما قد يعرض الإنسان للخطر سواء وقت التخزين ، أو أثناء النقل أو التركيب ، أو خلال فترة الاستعمال ، فقد تتسبب في إحداث عاهات في جسم الإنسان دائمة أو مؤقتة كالجروح والبثور والتسمم والالتهابات الرئوية أو الحساسية في الجلد والعينين ، مما يستوجب أهمية معرفة التركيب الكيميائي للمادة العازلة ، كذلك صفاتها الفيزيائية الأخرى من حيث قابليتها للاحتراق والتسامي وغيرها من الصفات .
3-5- الخصائص الصوتيـة :
بعض المواد العازلة للحرارة قد تستخدم لتحقيق المتطلبات الصوتية مثل امتصاص الصوت أو تشتيته وامتصاص الاهتزازات . لذا فإن معرفة الخواص المرتبطة بهذا الجانب قد يحقق هدفين بوسيلة واحدة نتيجة لاستخدام تلك المواد ، وهما العزل الحراري والعزل الصوتي .
إضافة إلى ما سبق من خواص فإن هناك خواص أخرى قد تكون ضرورية عند اختيار المادة العازلة المناسبة كمعرفة الكثافة والقدرة على مقاومة الانكماش وإمكانية الاستعمال لمرات عديدة ، وسهولة الاستعمال ، وانتظام الأبعاد ومقاومة التفاعلات الكيميائية والمقاسات والسماكات المتوفرة ، بالإضافة للعامل الاقتصادي الذي يلعب دوراً هاماً في استخدام أو عدم استخدام تلك المواد العازلة إذ إن سعر المادة العازلة كبير عند الاختيار .
4- اختيار مواد العزل الحراري المناسبة :
إن من أهم العوامل التي تؤثر على اختيار مواد العزل الحراري المناسبة ما يلي :
4-1- أن تكون المادة العازلة ذات مقاومة توصيل حراري منخفض .
4-2- أن تكون على درجة علية من مقاومتها لنفاذ الماء والإشعاع .
4-3- أن تكون على درجة عالية في مقاومتها لامتصاص بخار الماء .
4-4- أن تكون على درجة عالية في مقاومتها للاجهادات الناتجة عن الفروقات الكبيرة في درجات الحرارة .
4-5- أن تكون ذات خواص ميكانيكية جيدة كارتفاع معامل المقاومة الانضغاطية ومعامل المقاومة للكسر .
4-6- أن تكون مقاومة للبكتيريا والعفن والحريق خاصة في الأماكن المعرضة للحريق بسهولة .
4-7- أن تكون ثابتة الأبعاد على المدى الطويل قليلة القابلية للتمدد أو التقلص .
4-8- أن تكون مقاومة للتفاعلات والتغيرات الكيمائية .
4-9- ألا ينتج عنها أي أضرار صحية .
4-10- أن تكون مطابقة للمواصفات القياسية السعودية .
4-11- سهولة التركيب .
5 – مواد العزل الحراري :
يمكن تقسيم مواد العزل الحراري حسب مصادرها إلى أربعة أقسام :
5-1- المواد العازلة من أصل حيواني : مثل صوف وشعر الحيوانات ، ويعتبر استخدامها كمواد عازلة محدوداً .
5-2- المواد العازلة من أصل جمادي : كالصوف الزجاجي ، وهو من أفضل مواد العزل الحراري .
5-3- المواد العازلة الصناعية : وتشتمل المطاط والبلاستيك الرغوي ، والأخير هو الأكثر شيوعاً ، وأكثر ما يستخدم هو نوع البولي سترين والبولي يورثين الرغوي .
5-4- المواد العازلة من أصل نباتي : وتشتمل الألياف أو المواد السيلولوزية مثل القصب والقطن وخلافه .
6 - أنواع المواد العازلة واستخداماتها :
يمكن أن توجد المواد العازلة على عدة صور وهي :
6-1- اللباد .
6-2- حبيبات الحشو الخفيف .
6-3- سائل رغوي بخاخ .
6-4- رغوي صلب ( لوائح أو شرائح ) .
6-1- اللبـــاد :
يوجد على شكل لفائف طويلة وسماكات مختلفة ، وأغلب اللباد مغلف بالورق أو برقائق معدنية مزودة بإطار من الجانبين لمسك الجوانب ، ويمكن أن تكون الرقيقة المعدنية على وجه واحد من تلك اللفائف ، كما يمكن أن يكون أحد الأوجه مغلفاً بالورق المغطى بالأسفلت أو البيتومين ليعمل كحاجز للبخار أو الرطوبة أو طبقة من الورق الرقيق المثقب على الوجه الآخر .
وغالباً ما يصنع اللباد من مواد عضوية تشتمل على ألياف زجاجية . وكذلك يمكن توفر الألياف السليولوزية على هيئة اللباد . ويوضع اللباد على الحائط الداخلي للبناء ، وغالباً ما يستخدم في عزل الأسقف والحوائط .
6-2- حبيبات الحشو الخفيف :
وتتكون هذه المادة العازلة من حبيبات صغيرة ، وعند استخدام عزل الحبيبات فإن معدات الشفط الموجودة في الناقلات الحاملة لهذه المادة العازلة تقوم بشفط الحبيبات وتوجيهها للمكان المطلوب عزله .
6-3- سائل رغوي بخاخ :
توجد هذه المادة على هيئة نوعين : إحداهما : ألياف غير عضوية من النوع اللاصق ، والثاني : يكون من الرشاش العضوي من ألياف الصوف المعدني . ويتم تركيبه بواسطة آلات خاصة مصممة لهذا الغرض ، أما النوع الثاني فيتكون من عبوتين مناسبتين لأغراض الرش .
6-4- الألواح الصلبة أو الشرائح :
وهي واسعة الانتشار ، وتستخدم في المباني لعزل الأسطح والخرسانات الرغوية.
7 - طرق تصنيع المواد العازلة :
7-1- الألياف الزجاجية :
الألياف الزجاجية العازلة تصنع من ألياف زجاجية رقيقة ، ونظراً لأن أحد الألياف الزجاجية يغطى بالأسقف أو الرقائق المعدنية الورقية ، وهي مادة قابلة للاشتعال ، لذلك يجب ألا تتعرض هذه الطبقة لدرجات حرارة تزيد عن 180 درجة فهرانهيت ، ومن مميزات الألياف الزجاجية العازلة أنها لا تنكمش بمرور الوقت كما أن مقاومتها للحريق لا تتأثر بعمرها أو الاختلاف العادي في درجات الحرارة .
7-2- الصوف الصخري :
يتم صناعة الصوف الصخري من الصخور الطبيعية المتوفرة بالمملكة ، كما يمكن صناعة الصوف الصخري من خبث الحديد أو النحاس أو الرصاص ، ويستخدم بلاً من الصخور الطبيعية كمادة خام .
ويتم صهر الخبث باستخدام الفحم كوقود ، ويغزل في ألياف بصب المادة المنصهرة في وعاء دوار .
وتجفف الألياف بواسطة البخار وتبرد بسرعة لدرجة الغرفة . والمواد العازلة المصنوعة من الصوف الصخري (الخبث) ليس لها مرونة الجسم المصنوع من الزجاج . ويتم رش تلك الألياف مع مادة صمغية من الفنينيل والتي تعمل كرابط وتضغط ، ثم يتم معالجتها بتمريرها في فرن ، ويتم تقطيع الشرائح الناتجة بالحجم المناسب ، ويمكن إضافة مادة أخرى هي الزيوت المعدنية لتقي السطح ضد الأتربة والمياه ، ولا تتأثر خواصها من حيث الثبات ومقاومة الحريق بمرور الوقت أو تغير درجات الحرارة .
7-3- البولي سترين الرغوي الممدد :
يتم تصنيع البولي سترين الرغوي بطريقتين : الحقن أو الصب في أعمدة ممددة ، والبولي سترين الرغوي الناتج بالحقن يكون ذو كثافة عالية ومظهر موحد ، وله قدرة تحمل الضغط وشدة استطالة أكبر من البولي سترين الناتج بطريقة الصب .
ومن مميزات البولي سترين عند استخدامه في تغليف هياكل المباني أنه يعطى عزلاً لكامل هيكل المبنى ، وبذلك يقلل تأثير العناصر الإنشائية الأكثر توصيلاً .
وهناك ميزة أخرى لاستخدام هذا النوع من العزل وهي تقليل تسرب الهواء وتأثيره على تلك العناصر الإنشائية الأكثر توصيلاً ، وهناك خواص أخرى لا تعتمد على طريقة التصنيع ، والبولي سترين مادة قابلة للاشتعال وعند استخدامها فإنه يتم دهانها بطبقة مقاومة للحريق مثل مادة الجبس ، كما لا تتأثر خواصها بتعرضها لفترات قصيرة للأشعة فوق الحمراء .
وأكبر درجة حرارة يتحملها البولي سترين هي 165 درجة فهرانهيت ، وإذا ما تعرض لدرجة حرارة أعلى من ذلك فإن المادة البلاستيكية ستصبح طرية (لدنة) أما تغير درجات الحرارة فإنه لا يؤثر على البولي سترين خلال درجات الحرارة العادية .
7-4- البولي يورثين الرغوي :
إن مادتي البولي يوريثين والبولي سوكنورميث الرغوية هي مواد فلوركربونية يمكن الحصول عليها مسبقة الصب ، أو يمكن رشها في أماكن تركيبها ، وتستخدم تلك المواد لتغليف هياكل المباني ، وبذلك يمكن الحصول على عزل لكامل هيكل المبنى مما يقلل من تأثير العناصر جيدة التوصيل .
ويعمل معظم مصنعي تلك المواد على وجود وسائل لهروب بخار المياه الذي تسرب للسطح الداخلي ويقلل ذلك من تأثير عدم تنقية الهواء ، وتعتبر تلك المركبات من النوع القابل للاشتعال ، ويجب أن تغطى بمادة غير قابلة للاشتعال عند استخدامها كمادة عازلة للحرارة كما هو الحال في معظم استخداماتها .
ويؤثر الزمن على تلك المادة ، وتتناسب درجة الإنكماش أو التمدد مع درجة الحرارة والرطوبة ومدة التعرض للحالات القصوى .
7-5- مادة البيرلايت :
وتتكون من خلايا دقيقة جداً تمتاز بخواص عزل حراري جيد ، وبمعالجتها بمادة السيلكون غير القابلة للاشتعال تزداد مقاومتها لتسرب المياه من خلالها ، ويعتبر البرلايت من المواد الطاردة للمياه والمقاومة للرطوبة .
ويمكن خلط البيرلايت الممددة مع الأسمنت البوتلاندي ليعطي خرسانة خفيفة عازلة تسمى خرسانة البيرلايت ، ويمكن تشكيلها مسبقاً إلى عدد لا نهائي من الأشكال ، كما يمكن صبها في نفس الموقع . ولها متانة ميكانيكية كافية لتحميلها بكثافة عالية .
8 – أهم الاعتبارات التي يجب مراعاتها عند تطبيق العزل الحراري :
يراعى أن تؤخذ العوامل التالية بعين الاعتبار عند تطبيق العزل الحراري :
8-1- أن تخزن المواد العازلة في أماكن جافة غير مكشوفة وتجنب تهشمها أو ثقبها .
8-2- يراعى تغطية مواد الأسطح من كلا الجانبين ، ويوضع حاجز فاصل (غلاف) من أعلاها وحاجز (غلاف) مقاوم لتسرب المياه من أسفلها أو العكس بالعكس ، وذلك حسب طريقة التركيب المناسبة لذلك .
8-3- تغطية مواد عزل الجدران من الجانبين بحاجز (غلاف) عازل للرطوبة ، وذلك حسب طريقة التركيب المناسبة لذلك .
8-4- تجنب إمكانية تهشم المادة عند البناء أو خلال عملية تركيبها .
8-5- أن تكون جميع أسطح المادة خالية من الغبار أو الشحوم قبل تركيبها .
8-6- أن تنطبق قيمة وحدة معامل الانتقال الحراري القصوى الموصوفة للسطح على السقف الكرتوني (سوليتكس) خصوصاً إذا كانت مادة العزل قد وضعت عليه .
8-7- إذا كان سطح المباني فوق السقف الكرتوني (سوليتكس) من نوع سقوف (الجالونات) فيجب توفير تهوية ميكانيكية للفتحة الكائنة بين السطح والسقف الكرتوني .
8-8- في المباني الخفيفة كالمخازن وغيرها التي تستعمل الصفائح المعدنية أسقفها وجدرانها ، من الضروري استعمال (الفيرجلاس) أو الصوف الزجاجي أو الصخري للعزل الحراري لأنها تقاوم الحريق والحرارة .
9 – رسائل أخرى للعزل الحراري :
إضافة إلى المواد المستخدمة في العزل الحراري فإن هناك طرقاً أخرى تساعد في عملية العزل الحراري ، وتتعلق بتصميم المبنى نفسه ومنها ما يلي :
9-1- استخدام الأسقف المستعارة في الأدوار العلوية .
9-2- زيادة منسوب ارتفاع سقف المبنى .
9-3- استخدام الزجاج المزدوج أو العاكس في جميع النوافذ وخاصة في الأماكن التي تتطلب مساحات كبيرة من الزجاج ، إضافة إلى عزل النوافذ باستخدام الستائر .
9-4- زراعة الأشجار حول المبنى .
نماذج لبعض طرق العزل الحراري
• نماذج لبعض طرق عزل الجدران بالعازل الحراري طريقة : 1 و 2
• نماذج لبعض طرق عزل الجدران بالعازل الحراري طريقة : 3
• نماذج لبعض طرق عزل الأسطح بالعازل الحراري طريقة : 1 و 2
• نماذج لبعض طرق عزل الأسطح بالعازل الحراري طريقة : 3 و 4
• نماذج لبعض طرق عزل الأسطح بالعازل الحراري طريقة : 5 و 6
• نماذج لبعض طرق عزل الأسطح بالعازل الحراري في مناطق تتميز بمناخ لطيف ومعدل أمطار عالي : مثال مدينة أبها طريقة : 7 و 8 و 9


المواصفات المخبرية للمواد العازلة
Extruded Polystyrene
Property Standard Unit Roof Wall
Density DIN53420 Kg/m3 32-35 26-28
Thermal conductivity laboratory value at 10ْ C mean test temperature ASTM C177 or ASTM C518 W/M.K 0.027 0.028
Compressive strength at 10% deflection ASTMD 1621-73 Kpa 300 210
Water absorption DIN 53428 %by Vol 0.2 0.2
Polyurethane Wall Insulation
Density 30 Kg/m3
Compressive strength 150 KN/m2
K Value (24ْ C) mean temp . 0.023 W/mk
Temperature limit 110ْ C
Water absorption max 1.5% by volume
Polyurethane Roof Insulation
Density 30 Kg/m3
Compressive strength 210 KN/m2
K Value (24ْ C) mean temp . 0.023 W/mk
Temperature limit 110ْ C
Water absorption max 1.5% by volume
Rockwool Panels for Wall
Thickness mm Thermal Conductivity (K) Mean Temperature C Density Kg/m3
50 0.033 10 50
60 0.033 10 50
50 0.0385 50 70
60 0.0382 50 70


التعليمات البلدية الخاصة بالعزل الحراري
1. تعميم رقم 1713/1/ع في 28/10/1405هـ بشأن العزل الحراري وسبل ترشيد الاستهلاك الكهربائي بالمباني .
2. تعميم رقم 4800/4/وف في 15/8/1406هـ بشأن عدم قبول أي مخططات للمباني الحكومية أو الاستثمارية (تجارية أو سكنية) ما لم يوضح بها نوع ومواصفات مواد العزل الحراري .
3. تعميم رقم 8103/4/وف في 18/2/1415هـ بشأن تشجيع المواطنين على استخدام العزل الحراري في مبانيهم الخاصة وعدم قبول أي مخططات للمباني الحكومية أو الاستثمارية (التجارية والسكنية) ما لم يوضح بها نوع ومواصفات مواد العزل الحراري .
4. تعميم رقم 39191 في 29/8/1420هـ بشأن استخدام العزل الحراري في المباني .

صفاالروح
03-21-2009, 03:23 PM
الكتاب كثير حلوو وعجبني يسلمو على الجهود
:eh_s (8)::eh_s (8)::eh_s (15)

أسيرة
04-18-2009, 02:37 PM
مشكور على هذه الشروح المفهومة..... مشكور.... مشكور.... مشكور

ahmadouv
10-13-2009, 12:48 PM
مشكور على هذه الشروح المفهومة..... مشكور.... مشكور.... مشكور

عاشقة القرآن
10-13-2009, 05:21 PM
بارك الله فيك ..أشكرك على هذا المجهود الكبير
و الشكر موصول لأستاذك

وفقكم الله لما يحب و يرضى

الاستاذ مناف دحروج
10-13-2009, 07:33 PM
شكرختي مسك القران الموضوع نسي بس انتي رجعتيه للقائمه في المنتدي


شكر اعلي مرورك

الاستاذ مناف دحروج
10-13-2009, 07:36 PM
شكرا مسك القران علي المرور

محمد ابوزيد
10-20-2009, 07:42 PM
بارك الله فيك
مع الشكر

اخوكم / ابو ايه

moh meftah
12-26-2009, 10:43 AM
بارك الله فيك ..أشكرك على هذا المجهود الكبير
و الشكر موصول لأستاذك

وفقكم الله لما يحب و يرضى


ربنا يوفقك انشالله وينور طريقك متتصورشقد ايش انا استفت منه

فيزيائي موهوب
11-28-2010, 02:17 AM
يعطيك العافيه اخي الفاضل والى الامام ان شاء الله

ايمان الروح
03-11-2011, 08:45 PM
مشكوووووووور والله وجزاك الله خيير الجزاء
وجعله في ميزان حسناتك